一.前引
假设有一个数组ai,满足a1<=a2<=a3<=...<=an,求最小的m满足am>=k.
若a[n/2]>=k,那么答案一定在n/2的左边,即m<=n/2,否则m>n/2
每一次答案的查询范围折半,这样logn次就能找到答案.
来看两个个实际的例子:
case 1:小明想了一个1~100之间的数让小红猜,每次小红告诉她认为的那个数,小明回答她大了或者小了直到正确.
假如小红先猜500,小明回答小了,小红再猜750.若小明回答大了,就猜250...就像这样不断地缩小范围,每次猜最中间的那个数,最后一定可以猜对.
case 2:在我们学校进行oi动员宣讲时,可爱的xr姐姐 xr学长带领我们做了一个翻书的游戏,这本书总共n页,我们要求他翻到某一页.他当时先翻到最中间,看一下页码,再决定是往前翻还是往后翻.不断地缩小范围,每次翻中间的一页,直到翻到指定页数
二.概念
二分查找,又名折半查找,是一种在有序表中快速查找的办法
通常,我们维护一个答案可能存在的区间,通过每次将要查找的值与区间的中央元素相比较,不断缩小区间,直到区间只剩下一个数,这个数即是答案.
区间一开始的长度是n,每次缩小一半,最后变为1,应操作O(log 2 n)次
三.代码实现
这里给出一道模板题目https://www.acwing.com/problem/content/791/
返回一个元素 k 的起始位置和终止位置
两遍二分,第一次找到第一个等于k的数,第二次找到最后一个等于k的数
#include <iostream>
using namespace std;
const int N=1e5+10;
int a[N];
int main()
{
int n,q;
cin>>n>>q;
for(int i=0;i<n;i++) cin>>a[i];
while(q--)
{
int k;
cin>>k;
int l=0,r=n-1;
while(l<r)
{
int mid=l+r>>1;
if(a[mid]<k) l=mid+1;
else r=mid;
}
if(a[l]!=k)
{
cout<<"-1 -1"<<endl;
continue;
}
cout<<l<<' ';
l=0,r=n-1;
while(l<r)
{
int mid=l+r+1>>1;
if(a[mid]>k) r=mid-1;
else l=mid;
}
cout<<r<<endl;
}
return 0;
}
四.应用
• 从有序数组里找给定的值
• 从有序数组里找大于等于给定的值的最小的值
• 寻找单调函数的零点
• 求一些方程的近似解
• 二分答案
这里我们介绍一下二分答案,顾名思义,它用二分的方法枚举答案,并且枚举时判断这个答案是否可行。但是,二分并不是在所有情况下都是可用的,使用二分需要满足两个条件。一个是有界,一个是单调。
• 最优化问题:在满足某些条件的情况下,最大化(最小化)某个值
• 可行性问题:在满足某些条件的情况下,构造出一个合法方案
• 在做一些最优化问题时,我们会遇到这样的情况:直接做比较困难,但是假如我们把问题转化一下,变成可行性问题,会变得简单。并且答案是单调的,那么就可以使用二分答案的技巧
• 套用上面二分查找的写法,然后把判断条件变成判断目标答案是否可行
• 时间复杂度为 O(logn)× 每次判断答案的时间
如果题目规定了有“最大值最小”或者“最小值最大”的东西,那么这个东西应该就满足二分答案的有界性(显然)和单调性(能看出来)
五.例题
我们先用几个题目理解一下二分答案
noip2015跳石头
题意:直线上有 n 块石头,需要移走 m 块(最两边的不能移走),使得剩下的石头中,最近的两块石头间距最大,求这个最大值
二分跳跃距离(答案区间0~25),将这个跳跃距离认为是最短的跳跃距离。以这个标准去搬运石头
使用一个check函数去判断这个解是不是可行解。如果这个解是可行解,那么可能存在比这个解更优的可行解,那我们就去它的右边二分.去右边的原因是右边的值较大,而我们要找的是最小值的最大解,而且这个区间是递增的。我们有可能在右边的区间找到更大更优的解,若没有则当前的可行解即是最优解.反过来,如果这个解是一个非法的解,那我们就不必去右边找了,右边的解一定都是非法解。
check函数应该怎么实现呢?大体思路是判断这个解是不是一个合法的解,每个题目不一定相同。在这个题目里,我们以这个距离为最短距离去判断需要搬走多少石头,将搬走的数量与实际要求的数量相比,若超出则说明此解不合法。
模拟跳石头的过程,开始在起点,pos=0,我在跳之前判断我当前要跳跃的距离,如果这个距离比二分出的mid小,那么这就是一个不合法的石头应该移走。为什么呢?因为我们二分出的mid已经是最小的跳跃距离了,不可能再有比它还小的了。移走之后,计数器+1继续往前跳,不断进行这个操作,知道pos=n+1(n不是终点)
模拟完后查看计数器的值,它代表了我们以mid为答案要移走的石头数量,判断这个数量是否超过m
下面是代码实现
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int L,n,m;
int d[1000010];
int l,r,mid,ans;
bool check(int t)
{
int cnt=0;
int pos=0;//下一块石头的位置
int now=0;//当前人的位置
while(pos<n+1)
{
pos++;
if(d[pos]-d[now]<t) cnt++;//出现了比最短距离还短的距离,那么这块石头应当搬走
else now=pos;//否则就跳过去
}
if(cnt>m) return false;
else return true;
}
int main()
{
cin>>L>>n>>m;
for(int i=1;i<=n;i++) cin>>d[i];
d[n+1]=L;
l=1;r=L;
while(l<=r){
mid=(l+r)/2;
if(check(mid)){
ans=mid;
l=mid+1;//找到一个可行解,右移看看能不能找到更优的可行解
}
else
{
r=mid-1;
}
}
cout<<ans<<endl;
return 0;
}
这个题目有个很明显的特征:最小值最大化,下面我们再来看一道这种的例题
POJ2456
题意:c头牛,n个隔间,c头牛容易打架,分配隔间使得相邻的牛距离越远越好,即求牛之间最小距离的最大值
先对隔间的坐标排序。牛之间的最小距离为0,最大距离不超过区间长度,二分地查找分割距离的最大值
每获得一个mid就check一次,check时贪心的放置牛,使前i个牛符合分割标准
check就看看按这个距离能否放下所有的牛
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,c;
int x[1000010];
bool check(int t)
{
int now=x[0];
int cnt=1;
for(int i=1;i<n;i++)//剩下的隔间
{
if(x[i]-now>=t)//这个隔间和上个隔间>=t,还可以放牛
{
now=x[i];
cnt++;//放进去一头牛
}
if(cnt>=c) return true;
}
return false;
}
int main()
{
cin>>n>>c;
for(int i=0;i<n;i++) cin>>x[i];
sort(x,x+n);
int l,r,mid;
l=1,r=x[n-1]-x[0];
while(l<r)
{
mid=(l+r)/2;
if(check(mid)){
l=mid+1;
}
else r=mid;
}
cout<<r-1<<endl;
return 0;
}
noip提高组2001(或之前) 一元三次方程求解
求ax3+bx2+cx+d=0的解,保证有三个不同实根且都位于-100到100之间,且根与根之间的绝对值>=1
从-100到100枚举根,以每个值为区间左端点,长度为1,如果满足题目条件(>=1)并符合函数的零点定理(f(x1)*f(x2)<0)我们就对[x1,x2]这个区间进行二分,如果f(x1)*f(mid)<0我们就去mid左边试试看,如果不是则去mid右边,这样不断缩小区间长度,整个二分过程必须满足绝对值>=1
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
double a,b,c,d;
double f(double x)
{
return (x*x*x*a+x*x*b+x*c+d);
}
int main()
{
cin>>a>>b>>c>>d;
double x1,x2,x3;
double x;
double mid;
for(x=-100;x<=100;x++)
{
x1=x,x2=x+1;
if(f(x1)==0) printf("%.2lf ",x1);
else if(f(x1)*f(x2)<0)
{
while(x2-x1>=0.001)
{
mid=(x1+x2)/2;
if(f(x1)*f(mid)<0) x2=mid;
else x1=mid;
}
printf("%.2lf ",x1);
}
}
return 0;
}
Luogu P1182数列分段 Section II
二分区间(max(a[i]),sum(a[i])),因为两种极端情况是每个数自成一组,或只分出了一组
对于找出来的每一个最大值,验证以它为最大值的情况下的分组情况。在这里我们贪心地分组,如果加上这个数比最大值小就加上,否则就再分一组
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m;
int a[100010];
int sum,cnt;
bool check(int mid,int a[])
{
for(int i=0;i<n;i++)
{
if(sum+a[i]<=mid) sum+=a[i];
else sum=a[i],cnt++;
}
return cnt>=m;
}
int main()
{
cin>>n>>m;
int l=0,r,mid;
for(int i=0;i<n;i++)
{
cin>>a[i];
l=max(l,a[i]);
r+=a[i];
}
while(l<=r)
{
mid=(l+r)/2;
sum=0,cnt=0;
if(check(mid,a)) l=mid+1;
else r=mid-1;
}
cout<<l;
return 0;
}
Luogu P1873砍树
待更。。。