题目描述 Description
给出一个整数 n(n<10^30) 和 k 个变换规则(k<=15)。
规则:
一位数可变换成另一个一位数:
规则的右部不能为零。
例如:n=234。有规则(k=2):
2-> 5
3-> 6
上面的整数 234 经过变换后可能产生出的整数为(包括原数):
234
534
264
564
共 4 种不同的产生数
问题:
给出一个整数 n 和 k 个规则。
求出:
经过任意次的变换(0次或多次),能产生出多少个不同整数。
仅要求输出个数。
输入描述 Input Description
键盘输人,格式为:
n k
x1 y1
x2 y2
... ...
xn yn
输出描述 Output Description
屏幕输出,格式为:
一个整数(满足条件的个数)
样例输入 Sample Input
234 2
2 5
3 6
样例输出 Sample Output
4
由于只要求输出方案总数,一般不是搜索。于是考虑图和DP。
可以把每个数字看成是一个节点,分别计算对于每个数字与其他节点的连通性,然后运用乘法原理统计方案总数。连通性的查询,可以用floyd的传递闭包处理,说白了就是这样:
for (int k=0;k<=9;k++)
{
for (int i=0;i<=9;i++)
{
for (int j=0;j<=9;j++)
{
a[i][j]=a[i][j]||(a[i][k]&&a[k][j]);
}
}
}
(题外话:所以说现在括号开始另起一行了,原来都是在右边写的···)
由于数据在十的三十次方,要用到高精。
写这个代码出了两处小小的问题。一个是=和==的问题(都多长时间了还犯这种错误),再有就是,不要过度相信scanf的性能,输入格式一定要注意。实在不行就cin吧···
请注意数组的整体引用那一段,传指针。
放代码:
//codevs1009 ²úÉúÊý NOIP2002ÆÕ¼°
//copyright by ametake
#include
#include
using namespace std;
int k,len;
bool a[10][10];
int w[50];
char s[50];
void init()
{
freopen("1.txt","r",stdin);
scanf("%s%d",s,&k);//notice
len=strlen(s);
memset(a,false,sizeof(a));
int x,y;
for (int i=0;i
9) {w[i]+=w[i-1]/10;w[i-1]%=10;}
return;
}
void outit()
{
int i=49;
while (w[i]==0) i--;//again!!!!!==
for (int j=i;j>0;j--) printf("%d",w[j]);
printf("\n");
return;
}
int main()
{
init();
for (int k=0;k<=9;k++)
{
for (int i=0;i<=9;i++)
{
for (int j=0;j<=9;j++)
{
a[i][j]=a[i][j]||(a[i][k]&&a[k][j]);
}
}
}
memset(w,0,sizeof(w));
w[0]=w[1]=1;
for (int i=0;i
——道士顾笑,予亦惊寤。开户视之,不见其处。