TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet结合Transformer和U-Net的优势,适用于医疗图像分割,表现出优于AttnUNet、V-Net的性能。文章介绍了如何使用Transformer编码全局上下文,而U-Net解码器则恢复局部空间信息,提供精确定位。实验结果显示,TransUNet在多器官和心脏分割等任务上表现出色。此外,还提到了相关交流群的信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

同时具有Transformers和U-Net的优点,性能优于AttnUNet、V-Net等网络,代码刚刚开源!(按这样搞,TransVNet、TransYOLO应该也快来了,手动狗头)

注1:文末附【Transformer】和【医疗影像】交流群

注2:整理不易,欢迎点赞,支持分享!

TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation
在这里插入图片描述

  • 作者单位:JHU, 电子科大, 斯坦福大学等
  • 代码:Beckschen/TransUNet
  • 论文:https://arxiv.org/abs/2102.04306

医学图像分割是开发医疗保健系统(尤其是疾病诊断和治疗计划)的必要先决条件。在各种医学图像分割任务中,U形架构(也称为U-Net)已成为事实上的标准,并取得了巨大的成功。但是,由于卷积运算的固有局部性,U-Net通常在明确建模远程依赖关系方面显示出局限性。

设计用于序列到序列预测的transformer已经成为具有先天性全局自注意力机制的替代体系结构,但由于low-level细节不足,可能导致定位能力受到限制。

在本文中,我们提出了TransUNet,它同时具有Transformers和U-Net的优点,是医学图像分割的强大替代方案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值