AI被自己骗了!生成照骗轻松逃过AI鉴别器法眼,马斯克机器女友、3米巨人都「成真」了...

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【目标检测和Transformer】交流群

明敏 发自 凹非寺
转载自:量子位(QbitAI)

以假乱真的AI生成式图片,AI自己分辨不出来了。

这张马斯克和机器人女友的照片,5个鉴别器里有2个都觉得是真的

483e69738c13d482a5a7a262de2b8e7c.png

还有这张人类和3米巨人的合照,居然5个鉴别器一致判断为真

a245295182463e0ebc89930d1ca3ff54.png

啊这,AI鉴别器似乎不太靠谱的亚子。

这就是《纽约时报》最近做的一项测试,他们找来了市面上五个常见的AI鉴别器,分别喂给它们100多张照片做测试。

结果发现,AI鉴别器不仅会把AI照片错认成真的,也会把真实照片划定为AI生成的。

而且不同鉴别器之间的水平差距也不小。

具体表现如何?一起来看

加点颗粒(Grain)就能骗过鉴别器

在这项测试中一共使用了5个AI鉴别器,分别是:

  • Umm-maybe

  • Illuminarty

  • A.I or Not

  • Hive

  • Sensity

测试的内容包括AI和人类创作的图片,分别喂给每个鉴别器,看它们会怎样判断。

使用的AI创作工具包括Midjourney、Stable Diffusion、Dall-e等。

《纽约时报》主要展示了这样几个例子。包含5张AI创作的图片,以及2张真人拍的照片。

从统计结果来看,五个鉴别器中只有Hive全部判断正确。

Umm-maybe的表现最差,只判断对了两张图。

f56160707bb8ceb5bfc07af9c0a6bf6c.png

举例来看,这张照片是AI生成的,听说还在2月的一场摄影比赛中拿下大奖,这道题就难倒了大部分鉴别器。

01f5050c379825915587f87df254facc.png

但这张纯AI生成的照片,就没有逃过大部分鉴别器的法眼。

c270fe88d618861cc79ddb0e94c9adc4.png

对于人类创作的照片,AI鉴别器的正确率比较高,两张照片都只有Umm-maybe鉴别器判断错误。

5ec975d86e13c5d8692e80ad140ef17a.png

此外他们还专门测试了艺术画,发现大部分AI鉴别器能判断出这是真人画的。

91a3c07d48303410e5503066db270e99.png

对比另一幅AI创作的,同样也是四个鉴别器判断正确。

(Umm-maybe啊……是真的不太行)

89c6e6adfb7d722d187ea556e5563ab5.png

值得一提的是,如果对AI图像进行一些加工处理,AI鉴别器会失效。

比如这张Nike男的照片,一开始有4个鉴别器判断它是AI生成的。

4bc78ce86537e07f5c4131e35f1be884.png

但如果给图片加一些颗粒,AI鉴别器就会将这张图片的AI含量从99%,判断为仅有3.3%

42e86e27c1643512a8753187bd5aedc7.png

最后,我们也测试了一些能上手实测的鉴别器(Umm-maybe、Illuminarty、A.I or Not)。

结果显示,对于“马斯克在苏联”这张图,Umm-maybe觉得它有85%的概率是人类创作的。

55ecdd254b80ecf18db6ab700c17b75f.png

Illuminarty觉得它是AI创作的概率仅有5.4%。

37b40e0f179bcc15398c3b532cde1e5b.png

只有A.I or Not确定了它是AI生成的。

639a75483daf6728626f2639ec99f070.png

AI鉴别的判断标准是啥?

那么AI到底是怎么鉴别真伪的?

普遍来说,它们和人类的判断标准不太一样,人类一般以图像内容的合理性为依据,而AI更多是从图像的参数入手,比如像素的排列方式、清晰度、对比度等。

所以这就解释了开头那张巨人照片,为啥所有鉴别器都觉得很真。

b0d804206ddcb7d65bf3bc92e50d7374.jpeg

在AI画画大火一年多以后,如今市面上已经出现了非常多鉴别器。

有的就是直接放在Hugging Face上供大家免费使用,有的则是已经成立公司,只提供API接口形式。

比如Hive就是一家提供商业解决方案的公司,从如上的测试结果可以看到,Hive的表现效果也是最好的,几乎都能判断正确。

而在这之前他们的主要业务是为平台网站提供数据审核服务,图像视频文字都支持,服务的平台有Reddit、Quora等。

参考链接:
https://www.nytimes.com/interactive/2023/06/28/technology/ai-detection-midjourney-stable-diffusion-dalle.html

点击进入—>【目标检测和Transformer】交流群

最新CVPR 2023论文和代码下载

 
 

后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:Transformer综述,即可下载最新的3篇Transformer综述PDF

目标检测和Transformer交流群成立
扫描下方二维码,或者添加微信:CVer333,即可添加CVer小助手微信,便可申请加入CVer-目标检测或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。
一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者ransformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

▲扫码或加微信号: CVer333,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉,已汇集数千人!

▲扫码进星球
▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看f25bf9c0d2e32de6ed54df5d56ceb97b.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值