ICCV 2023 | 从蒸馏到自蒸馏:通用归一化损失与定制软标签

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【计算机视觉】微信交流群

作者:美索不达米亚平原 |  已授权转载(源:知乎)编辑:CVer

https://zhuanlan.zhihu.com/p/644157944

本文介绍我们ICCV 2023关于知识蒸馏的工作: From Knowledge Distillation to Self-Knowledge Distillation: A Unified Approach with Normalized Loss and Customized Soft Labels, 文章包括了对logit蒸馏损失计算方法的改进,并基于改进后的公式提出了定制的软标签,用于实现自蒸馏。现在代码已经开源,欢迎大家使用~(转载请注明出处)

文章链接:arxiv.org/abs/2303.13005

代码链接:github.com/yzd-v/cls_KD

d85ddcd400c15acadc814f9c90277afa.jpeg

一、简介

原生蒸馏使用教师的logits作为软标签,与学生的输出计算蒸馏损失。自蒸馏则试图在缺乏教师模型的条件下,通过设计的额外分支或者特殊的分布来获得软标签,再与学生的输出计算蒸馏损失。二者的差异在于获得软标签的方式不同。

这篇文章旨在,1)改进计算蒸馏损失的方法,使得学生能更好地使用软标签。2)提出一种通用的高效简单的方法获得更好的软标签,用于提升自蒸馏的性能和通用性。针对这两个目标,我们分别提出了Normalized KD(NKD)和Universal Self-Knowledge Distillation (USKD)。

e21c062499e31468e664aaca3d779cd0.jpeg

二、方法与细节

1)NKD

用 V 表示label的值,分类任务采用交叉熵作为模型训练的原损失:

b3589dfb621ae3e331da09503203a6cc.png

原生的蒸馏损失表示为:

a02b738b4c01752d35e22142b63db218.png

a122516fd65483c6229d3fadd508b76e.png

2)USKD

根据NKD的公式,我们从target和non-target两个角度来人工设计软标签,以实现自蒸馏。首先针对target部分,教师输出的 Tt 在训练中是稳定的,并且反映了图片的分类难度。而在自蒸馏中,我们能使用的只有学生输出的 St,它在训练前期的值很小,并且不同样本间值的差异较小,此外随着模型的训练, St变化很大。为了使得其向 Tt 接近,我们首先对其进行平方,以扩大样本间的值差异,接着我们提出了一种平滑方法来控制其在不同训练阶段的相对稳定,并获得soft target label,用于计算NKD的第一部分target损失:

00a00b50bea4312ef5da0eeddc604b71.png

针对第二部分soft non-target labels,其组成可以分为不同类别的顺序分布以及值的分布。首先针对顺序,我们提出对CNN模型的第三个stage输出或者ViT模型的中间层token进行分类,用一个小的权重对这个分类进行弱的监督,得到weak logit Wi,再将 Wi 和 Si 归一化后相加,得到的顺序作为最终non-target label的顺序 Ri :

b4e1fc7a387c6157a2f04503ca7ec271.png

对于值的分布,我们采用了Zipf's LS 的做法,并利用 Ri 进行排序,获得soft non-target labels,用于计算NKD的第二部分non-target损失:

4e8b011a7ddb6728d5fb294fe93a4baa.png

三、实验

我们首先在CIFAR-100和ImageNet上对NKD进行了验证,学生更好地利用了老师的软标签soft labels,获得了更好的表现。

85b7e12bd25c80424cee05846dc6f42b.jpeg

对于自蒸馏,我们也在CIFAR-100和ImageNet上对USKD进行了验证,并测试了自蒸馏所需要的额外训练时间,模型在很少的时间消耗下便获得了可观的提升。

bf0072e26355187ad358df6d196510ee.jpeg

我们的NKD和USKD同时适用于CNN模型与ViT模型,因此我们还在更多模型上进行了验证。

597bc0ec32c36e26f039a30324c01e45.jpeg

四、代码部分

我们已将代码开源:

https://github.com/yzd-v/cls_KD

开源代码基于MMClassification,我们也在其中放了对应的模型,并且实现了一些其他文章,比如DKD,MGD,SRRL,WSLD,ViTKD,欢迎大家试用。

此外,我们对MMClassification的0.x大版本与1.x大版本进行了蒸馏环境的适配,供大家交流学习。

 
 

点击进入—>【计算机视觉】微信交流群

ICCV / CVPR 2023论文和代码下载

 
 

后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:ICCV2023,即可下载ICCV 2023论文和代码开源的论文合集
目标检测和Transformer交流群成立
扫描下方二维码,或者添加微信:CVer333,即可添加CVer小助手微信,便可申请加入CVer-目标检测或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。
一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

▲扫码或加微信号: CVer333,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉,已汇集数千人!

▲扫码进星球
▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看d7ab582c39d90bccc6739c27a30c2e39.gif

ICCV (International Conference on Computer Vision) 是计算机视觉领域的重要国际会议,每年都会汇聚最新的研究成果。ICCV 2023 版本中,医学图像分割作为其中一个热门研究方向,关注的是如何使用计算机视觉技术来自动分析和分割医学影像中的结构或病变,这对于疾病诊断、手术规划和治疗效果评估具有重要意义。 在ICCV 2023上,可能会探讨以下几个方面: 1. **深度学习方法**:深度学习特别是卷积神经网络(CNN)和递归神经网络(RNN)在医学图像分割中的应用会持续发展,比如U-Net、SegNet、Unet++等模型的改进和集成。 2. **弱监督和半监督学习**:减少标注数据的需求,通过利用大量未标注或部分标注的图像来提升分割性能。 3. **注意力机制**:自注意力机制可能会被用于更精准地聚焦于图像中的关键区域,提高分割的精度。 4. **医学图像的多模态融合**:结合不同类型的医学图像,如CT、MRI、PET等,以获得更全面的特征信息。 5. **迁移学习与预训练模型**:利用预训练在大规模数据集(如ImageNet)上的模型,然后在医疗领域的特定任务上微调。 6. **算法评估与挑战**:如何设计有效的评价指标和基准,以及组织针对特定医学图像分割任务的比赛。 相关问题--: 1. ICCV 2023中有哪些新型的医学图像分割算法被提出? 2. 在医学图像分割中,如何处理数据不平衡的问题? 3. 有没有在ICCV 2023上展示的成功案例,证明了医学图像分割技术的实际临床价值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值