点击下方卡片,关注“CVer”公众号
AI/CV重磅干货,第一时间送达
扫码加入CVer知识星球,可以最快学习到最新顶会顶刊上的论文idea和CV从入门到精通资料,以及最前沿项目和应用!发论文,强烈推荐!
转载自:募格学术 | 来源:中南大学、湖南日报·新湖南客户端
双非学校就注定做分母吗?今天就用身边的事例告诉你,不论出身如何,坚持成长,一路狂飙是可以的。
故事的主人公李志明博士,中南大学特聘教授、博/硕士生导师,德国马普学会钢铁研究所高熵合金研究组Guest Leader。
本科毕业于景德镇陶瓷大学,硕士毕业于上海工程技术大学,于2014年获上海交通大学材料科学与工程专业博士学位,博士就读期间于美国加州大学戴维斯分校联合培养。
如今,37岁的湖南省科技创新领军人才、中南大学教授李志明,深耕材料学领域,他说,材料最大的魅力在于有着丰富的内涵,包罗万象,无论你怎么追逐,它始终有你无法完全认识的一面。
两次在Nature发文,李志明打破传统思维限制,开拓了高性能材料全新的研究空间,提出亚稳定的、多相的、非等原子比的高熵合金体系,开发兼具优良力学性能和软磁性能的多组元高熵合金。设计材料,解构未来。实现新的技术革命。
2014年底,28岁的李志明远赴德国开展博士后研究工作。“我能够学习知识和创造知识并与国际同行进行交流,好像进入了一个与广阔世界连接的空间!”回忆起赴德之初的欣喜,李志明还记忆犹新,但当正式入职马普学会钢铁研究所后,学术造诣极高的科研同行和高端先进的技术设备让他产生了自卑感:“我就像掉进一个闪闪发光的宝库,却发现搬不动这些宝藏。”
为了尽快适应环境、缩小与同行的差距,一周七天,从早到晚,从设计研究方案到开展实验,科研几乎占据了他的全部时间。半年里,李志明掌握了绝大多数实验技能和分析手段。从陌生到熟练,在坚持习得更多知识和技能的过程中,他一步步拾起了对科研的自信。到了第二年,自信得到进一步提升。这一年,他发表了人生中第一篇《自然》论文,还在钢铁研究所里成立了自己主导的研究组。
2017年,李志明回国探亲,吃到了久违的家乡美味,油然生出一份莼鲈之思。同时,他目睹了国内在先进金属材料科技领域的快速发展,认识到国家科技创新与产业发展亟需更多青年科研人员参与,也感受到国家对青年科研人员开展前沿研究工作的强大支持,回国的念头在他心中愈发坚定。
李志明在学术论坛上作报告
2018年9月,李志明作为特聘教授入职中南大学,建立“先进多组元合金”研究团队,同时还保留了马普学会钢铁研究所的研究组客座组长身份,持续推进国际合作研究。这些年,李志明坚持立足国家战略需求,为新型高性能合金的开发提供了多种新思路,相关创新成果在《自然》《科学》等国际顶级学术期刊发表,并持续致力于推进科研学术成果的产业化应用。
2022年12月,《自然》刊文盘点了年度亮点新闻和观点,李志明团队与国际合作者的研究成果入选。这项研究开发了一种同时具有优异软磁性能和机械性能的多组元软磁合金材料,对软磁材料性能的进一步改善具有显著的推动作用。
浸润多年,李志明对于科研的热忱之心始终不移。“心无旁骛地学习和创造知识是幸福的事情。高性能金属材料开发对我国高端制造业的发展意义重大。这是一项非常有意义的工作,我会继续为之努力。”
高性能材料的研发不是一蹴而就
李志明的求学之路也并非一帆风顺
高考、考研受挫,
被质疑不能做科研……
但他从不把精力浪费在消极情绪里
坚韧不拔的毅力、执着科研的决心
使他心无旁骛地走到全球材料发展的前沿
当他向世人分享研究成果的那一刻
他感觉与世界联通了!
创新之路没有终点
探索新思路,开发新材料
实现新性能,抵达新世界
祝福李志明老师
愿您淬炼成“材”,熠熠生辉!
CVPR / ICCV 2023论文和代码下载
后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集
后台回复:ICCV2023,即可下载ICCV 2023论文和代码开源的论文合集
计算机视觉和Transformer交流群成立
扫描下方二维码,或者添加微信:CVer444,即可添加CVer小助手微信,便可申请加入CVer-计算机视觉或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF等。
一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群
▲扫码或加微信号: CVer444,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集近万人!
▲扫码加入星球学习
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看