点击下方卡片,关注“CVer”公众号
AI/CV重磅干货,第一时间送达
添加微信号:CVer2233,小助手会拉你进群!
扫描下方二维码,加入CVer学术星球!可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪,强烈推荐!
衡宇 梦晨 发自 凹非寺
转载自:量子位(QbitAI)
按时整活!
DeepSeek开源周第四天,直接痛快「1日3连发」,且全都围绕一个主题:
优化并行策略。
DualPipe:一种创新的双向流水线并行算法,能够完全重叠前向和后向计算-通信阶段,并减少“流水线气泡”。它通过对称的微批次调度,优化了并行计算效率。
Expert Parallelism Load Balancer (EPLB):用于MoE的负载均衡算法,通过复制高负载专家并智能地分配专家到不同GPU上,确保计算资源的均衡利用。它包含两种政策:层次化负载均衡和全局负载均衡。
Profiling Data:训练和推理框架的性能分析数据,展示了通信-计算重叠策略和底层实现细节。
这三者中,DualPipe从时间上优化了计算与通信的调度,EPLB从空间上平衡利用计算资源,Profiling Data则提供了前两者在实际应用中效果的可视化证据。
且DualPipe的开发团队中包括梁文锋本人。
发布后10分钟不到,3者在GitHub上的星标已经破300了,且其中DualPipe的星标飙升最快。
而DeepSeek一发推,网友的留言也排山倒海一般扑面而来,几乎都是不吝溢美之词:
好活!令人兴奋!
优化策略可以重新定义行业的性能。
Day 4,直接1日3连发
DualPipe
DualPipe是在DeepSeek-V3中首次出现双向流水线并行算法,现在代码完全开源。
它实现了前向与后向计算-通信阶段的完全重叠,还减少了流水线气泡(即某些设备在某些时刻空闲等待)。
DualPipe采用了双向微批次调度策略,其核心特点是:
对称设计:反向方向的微批次与前向方向对称排列,形成一种几何平衡的调度结构
计算-通信重叠:两个共享黑色边框的单元格表示相互重叠的计算和通信过程
双向并行:同时在两个方向上推进微批次,最大化硬件利用率
传统流水线并行方法如1F1B(one-forward-one-backward)在处理多GPU场景时会产生大量气泡。
DualPipe通过重新安排微批次执行顺序,和对称结构缓解这个问题。
EPLB
EPLB适用于V3/R1的专家并行负载均衡器,解决MoE模型在分布式训练和推理中的负载不平衡问题。
在MoE架构中,不同的输入会激活不同的专家,可能导致某些专家过载,进一步造成不同GPU的利用率不平衡。
EPLB采用“redundant experts”(冗余专家)策略:
识别高负载专家→复制多个副本分配到不同GPU→在推理时动态分配输入到负载较轻的专家副本。
并带有两种普通的策略:
分层负载平衡,专家并行较小的预填充阶段使用。
全局负载平衡,在专家并行规模较大的解码阶段采用。
V3/R1中的计算通信重叠分析数据
开源第四弹的part 3,DeepSeek公开分享了来自训练和推理框架的分析数据,以帮助社区更好地了解通信计算重叠策略和低级实现细节。
GitHub上注明,分析数据是使用PyTorch Profiler捕获的。
下载后,开发者可以通过导航到Chrome浏览器中的chrome://tracing(或Edge浏览器中的edge://tracing)将它进行可视化。
Attention please——DeepSeek模拟了一个绝对平衡的MoE路由策略进行分析。
首先,训练阶段。
训练配置文件数据演示了DeepSeek在DualPipe中,对一对单独的向前和向后数据块的重叠策略。
每个数据块包含4个MoE 层。
并行配置与DeepSeek-V3预训练设置一致EP64、TP1具有4K序列长度。
为简单起见,在profilng期间不包括PP通信。
其次,推理阶段。
1)预填充。
对于预填充,配置文件使用EP32和TP1(与DeepSeek V3/R1的实际在线部署一致),提示长度设置为4K,每个GPU的批量大小为16Ktokens。
在预填充阶段,DeepSeek利用两个微批次来重叠计算和多对多通信,同时确保注意力计算负载在两个微批次之间平衡
——这意味着相同的提示可以在它们之间分配。
2)解码。
(注:相关数据尚未准备就绪,将于稍后发布)
解码方面,该配置文件采用了EP128、TP1和4K的提示长度(与实际在线部署配置非常匹配),每个GPU的批量大小为128个请求。
与预填充类似,解码还利用两个微批处理进行重叠计算和多对多通信。
但与预填充不同的是,解码期间的all-to-all通信不会占用GPU SM:
发出RDMA消息后,所有GPU SM都会被释放,系统在计算完成后等待all-to-all通信完成。
有关all-to-all实现的更多信息,请参考开源周第二弹DeepEP。
One More Thing
“大放异彩!”
对于第四弹的开源内容,网友是这么感慨的。
目前看来,DeepSeek开源周的前4天,都挺令追更群众们满意。
尤其是这次开源周全部瞄准大模型的Infra层。
追更看客们表示:
更好的团队合作不仅是团队管理优化的一部分,更是实现顶级AI性能的秘诀。
DeepSeek正在创建新的标准,大规模训练的未来就在咱们眼前!
好了,DeepSeek开源周,明天就是最后一天了,不知道会有什么压轴登场?
扫码备注「DeepSeek-职业/姓名」加入群聊,一起第一时间直击DeepSeek开源周最后一弹!
参考链接:
https://x.com/deepseek_ai/status/1894931931554558199
Github:
[1]https://github.com/deepseek-ai/DualPipe
[2]https://github.com/deepseek-ai/eplb
[3]https://github.com/deepseek-ai/profile-data
何恺明在MIT授课的课件PPT下载
在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!
CVPR 2025 论文和代码下载
在CVer公众号后台回复:CVPR2025,即可下载CVPR 2025论文和代码开源的论文合集
ECCV 2024 论文和代码下载
在CVer公众号后台回复:ECCV2024,即可下载ECCV 2024论文和代码开源的论文合集
CV垂直方向和论文投稿交流群成立
扫描下方二维码,或者添加微信号:CVer2233,即可添加CVer小助手微信,便可申请加入CVer-垂直方向和论文投稿微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF、3DGS、Mamba等。
一定要备注:研究方向+地点+学校/公司+昵称(如Mamba、多模态学习或者论文投稿+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群
▲扫码或加微信号: CVer2233,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集上万人!
▲扫码加入星球学习
▲点击上方卡片,关注CVer公众号
整理不易,请赞和在看