Softer-NMS 论文笔记

本文详细介绍了Softer-NMS在解决传统NMS召回率低的问题上的改进,包括线性法和高斯法的实现。同时提出了KL Loss用于提升定位精度的训练检测网络。实验结果表明,结合KL Loss与Softer-NMS可以实现最佳的检测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


《Softer-NMS: Rethinking Bounding Box Regression for Accurate Object Detection》

背景

先回顾一下NMS和Soft-NMS:
在这里插入图片描述

NMS还好理解,就是统计与指定类别最高置信度BBS具有一定重叠度(IoU)较的BBS,然后根据IoU阈值来对置信度进行打分。高于阈值,则置信度置为0,低于阈值,则不变。

在这里插入图片描述

举个例子:

下图中红色边界框的置信度最高,绿色框的置信度较小&#

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值