递归操作
- 递归:函数间接或者直接调用自己
- 递归分两个过程:
- 1.往下调用,分解的过程
- 2.往上回溯,综合的过程
- 递归需要注意:
- 一定要有结束条件***
- 使用递归的操作,将使程序非常简单、简洁
- 以资源换取编写速度的算法
def funa(n):
print("this is amy")
def funcb(n):
funa(100)
print("this is csc")
funcb(100)
this is amy
this is csc
# fun_a 表示计算阶乘:f(n)=n*f(n-1),n>1
def fun_a(n):
print(n)
# 此为结束条件n=1
if n == 1:
return 1
return n * fun_a(n-1)
rst = fun_a(5)
print("f(10) = ", rst)
# 若无结束条件,将无限递归下去,出现RecursionError(递归错误)
5
4
3
2
1
f(10) = 120
斐波那契数列
- 数学定义:f(n) = f(n-1) + f(n-2), n>2, 第一二位都为:1
def fib(n):
if n ==1 or n == 2:
return 1
return fib(n-1) + fib(n-2)
rst = fib(10)
print("rst = ", rst)
rst = 55
汉诺塔
- A、B、C三根柱子,有三个盘子在A上,规定每次大的盘子都要在下面,最终将三个盘子移动到C上面
a, b, c = "A", "B", "C"
def hano(a,b,c,n):
if n == 1:
print("{} -> {}".format(a,c))
return None
if n == 2:
print("{} -> {}".format(a,c))
print("{} -> {}".format(a,b))
print("{} -> {}".format(b,c))
return None
# 将n-1个盘子,借助于c塔移动到b塔上
hano(a,c,b,n-1)
print("{} -> {}".format(a,c))
hano(b, a, c, n-1)
#只有一个盘子
hano(a, b, c, 1)
print()
# 有三个盘子
hano(a, b, c, 3)
A -> C
A -> B
A -> C
C -> B
A -> C
B -> C
B -> A
A -> C