矩阵小知识

本文介绍了矩阵的不同类型,包括埃尔米特矩阵、酉矩阵、可对角化矩阵、正规矩阵和正定矩阵,并探讨了LU、特征、QR、Cholesky和SVD分解。重点阐述了矩阵分解的重要性和应用,如在正定矩阵中的Cholesky分解以及实对称矩阵的特征分解。
摘要由CSDN通过智能技术生成

0. 矩阵种类

埃尔米特矩阵(Hermitian Matrix)

埃尔米特矩阵中每一个第 i i i 行第 j j j 列的元素都与第 j j j 行第 i i i 列的元素的复共轭。

A = A H ( 也 可 写 成 A = A ∗ ) A = A^H (也可写成 \hspace{2mm} A = A^*) A=AHA=A

对应于实数域的对称矩阵。

酉矩阵 (Unitary Matrix)

在复数域上存在特性

A ∗ A ∗ = I A * A^* = I AA=I

对应实数域的正交矩阵。

可对角化矩阵

如果存在一个可逆矩阵 P P P 使得 P − 1 A P P^{−1}AP P1AP 是对角矩阵,则它就被称为可对角化的,等同于 P A = Λ P PA=\Lambda P PA=ΛP

正规矩阵(Normal Matrix)

正规矩阵 A \mathbf {A} A 是与自己的共轭转置满足交换律的复数方块矩阵,也就是说, A \mathbf {A} A 满足

A ∗ A = A A ∗ \mathbf{A}^* \mathbf{A} = \mathbf{A} \mathbf{A}^* AA=AA

所有的 酉矩阵埃尔米特矩阵斜埃尔米特矩阵 都是正规的。

正定矩阵

  • 在线性代数里,正定矩阵是埃尔米特矩阵的一种。
  • 如果是实数,那么正定矩阵一定是对称矩阵
  • 正定矩阵所有的特征值 λ i \lambda_i λi 都是正的。

1. LU 分解

将一个矩阵分解为一个下三角矩阵和上三角矩阵的乘积。它可以被看作是高斯消去的矩阵形式。

分解的条件

所有子式都非零。 而即使矩阵不可逆,LU仍然可能存在。

Cholesky 分解是把一个对称正定的矩阵表示成一个下三角矩阵L和其转置的乘积的分解。它要求矩阵的所有特征值必须大于零,故分解的下三角的对角元也是大于零的。Cholesky分解法又称平方根法,是当A为实对称正定矩阵时,LU三角分解法的变形。

2. 特征分解 (Eigen Decomposition / Spectral Decomposition)

A A A 是一个 N × N N \times N N×N 的矩阵,且有 N N N 个线性独立的特征向量 q i ( i = 1 , … , N ) q_i (i = 1, \dots, N) qi(i=1,,N

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值