矩阵基础知识

1.矩阵的一些基础知识

1.1 矩阵只有乘法

1.2 向量有点乘(也是内积)和叉乘:

(1)点乘就是两个对应向量值相乘
:得到的是一个数值

  • 高中知道两个向量的长度解法:
    a ⋅ b = ∣ a ∣ ∣ b ∣ c o s < a , b > a · b = |a||b|cos<a,b> ab=abcos<a,b>
  • 如果给出两个向量的值:
    a = [ a 1 , a 2 , . . . , a n ] b = [ b 1 , b 2 , . . . , b n ] a=[a_1,a_2,...,a_n] \\ b=[b_1,b_2,...,b_n] a=[a1,a2,...,an]b=[b1,b2,...,bn]

则两个向量的内积:
a b = a 1 b 1 + a 2 b 2 + . . . + a n b n ab=a_1b_1+a_2b_2+...+a_nb_n ab=a1b1+a2b2+...+anbn

  • 学了线性代数之后,发现其实跟高中的向量表示方法是不同的,通常一个向量其实是列向量,即是:

a = [ a 1 a 2 ⋮ a n ] b = [ b 1 b 2 ⋮ b n ] a= \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \\ b= \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} a=a1a2anb=b1b2bn
则两个列向量的乘积通常表示为:

a T b = a 1 b 1 + a 2 b 2 + . . . + a n b n a^{\mathrm{T}}b = a_1b_1+a_2b_2+...+a_nb_n aTb=a1b1+a2b2+...+anbn

(2)叉乘得到是一个向量:
∣ 向 量 c ∣ = ∣ 向 量 a × 向 量 b ∣ = ∣ a ∣ ∣ b ∣ s i n < a , b > |向量c|=|向量a×向量b|=|a||b|sin<a,b> c=a×b=absin<a,b>

1.3 单位向量

向量模为1的向量被称为单位向量。模的计算公式为:
a = [ a 1 , a 2 , . . . , a n ] ∣ a ∣ = ( a 1 2 + a 2 2 + . . . + a n 2 ) a=[a_1,a_2,...,a_n] \\ |a| = \sqrt(a_1^2+a_2^2+...+a_n^2) a=[a1,a2,...,an]a=( a12+a22+...+an2)

1.4 正交矩阵

A A T = E AA^{\mathrm{T}}=E AAT=E

  • 其中 E E E为单位矩阵
  • 正交矩阵有几个性质:

(1)A的各行是单位向量且两两正交(两个行向量的内积为0)

(2)A的各列是单位向量且两两正交

(3)A的各行(或者列)是模为1的向量

比如:

正交矩阵

1.5 线性无关和线性相关的向量

在向量空间V的一组向量 A = [ a 1 , a 2 , . . . , a n ] A=[a_1,a_2,...,a_n] A=[a1,a2,...,an],如果存在不全为零的数 k 1 , k 2 , ⋅ ⋅ ⋅ , k m k_1, k_2, ···,k_m k1,k2,,km, 使

k 1 a 1 + k 2 a 2 + . . . + k n a n = 0 k_1a_1+k_2a_2+...+k_na_n = 0 k1a1+k2a2+...+knan=0

则称向量组A是线性相关的,否则数 k 1 , k 2 , ⋅ ⋅ ⋅ , k m k_1, k_2, ···,k_m k1,k2,,km全为0时,称它是线性无关

1.6 矩阵的逆

A B = E AB=E AB=E

AB=E,则说B为A的逆矩阵
矩阵的逆

1.7 对称矩阵

对称矩阵(Symmetric Matrices)是指以主对角线为对称轴,各元素对应相等的矩阵

1.7 矩阵的秩(rank)

(1)n阶行列式的值怎么求解?

n阶行列式求解方法

  • 代数余子式:

代数余子式1

代数余子式2

  • 利用代数余子式求解n阶行列式:

n阶行列式

(2)r阶行列式

r阶行列式就是对一个矩阵画r条横线,r条竖线,这个横竖线交叉的元素构成了一个新的数表,这个数表的行列式就叫作这个矩阵的r阶子式。

(3)矩阵的秩

-定义:矩阵中的任意一个r阶子式不为0,且任意的r+1阶子式为0,则阶数r就叫作该矩阵的秩。

1.8 伴随矩阵

矩阵中的全部元素的代数余子式所构成的矩阵就为伴随矩阵。

方阵 A = ( a i j ) n × n A=(a_{ij})_{n \times n} A=(aij)n×n的各元素的代数余子式 A i j A_{ij} Aij所构成的如下矩阵 A ∗ A^* A:

A 11 A 12 . . . A 1 n ⋮ ⋮ . . . ⋮ A n 1 A n 2 . . . A n n \begin{matrix} A_{11} & A_{12} & ... & A_{1n} \\ \vdots & \vdots & ... & \vdots \\ A_{n1} & A_{n2} & ... & A_{nn} \\ \end{matrix} A11An1A12An2.........A1nAnn

1.9 矩阵的零空间

如果存在矩阵 A A A,要找到它的零空间,须找到所有向量$v$使得 A v = 0 Av=0 Av=0.

零空间的计算方法:
https://www.cnblogs.com/bigmonkey/p/9591191.html

1.10 矩阵的扩展基定理

可以由一组正向量组扩展成正交基:
https://wenku.baidu.com/view/8ae3706e58fafab069dc02f8.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

洛克-李

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值