Partial Differential Equations (PDEs)

Partial Differential Equations (PDEs)

12.1 PDEs

(Defintion) of PDE

  1. A PDE is an equation involving one or more partial derivatives of an unknown
  2. The order of a PDE: the highest order of the partial derivatives of the unknown

(Ex01) 1st order PDEs

u t + a ( x ) u x = f ( x , t ) u_t + a(x)u_x = f(x,t) ut+a(x)ux=f(x,t)

(Ex02) 2nd order PDEs

u t t − C 2 u x x = f a wave equation u ( 0 , t ) = 0 u ( L , t ) = 0 \begin{aligned} u_{tt} - C^2 u_{xx} &= f \hspace{1cm} \text{a wave equation} \\ u(0,t) &= 0\\ u(L,t) &= 0 \end{aligned} uttC2uxxu(0,t)u(L,t)=fa wave equation=0=0

Other Second-Order PDEs

u t − k u x x = f one-dimensional heat equation u x x + u y y = 0 two-dimensional Laplacian equation u x x + u y y = f \begin{aligned} u_t - ku_{xx} &= f \hspace{1cm} \text{one-dimensional heat equation} \\ u_{xx} + u_{yy} &= 0 \hspace{1cm} \text{two-dimensional Laplacian equation} \\ u_{xx} + u_{yy} &= f \end{aligned} utkuxxuxx+uyyuxx+uyy=fone-dimensional heat equation=0two-dimensional Laplacian equation=f

(Ex03) Darcy Flow

{ J = − k ∇ u u: the pressure ∇ J = 0 \begin{cases} J = -k \nabla u \hspace{1cm} \text{u: the pressure}\\ \nabla J = 0 \end{cases} {J=kuu: the pressureJ=0

If k ≡ 1 k\equiv 1 k1: − ∇ ( ∇ u ) = 0 ⟶ u x x + u y y = 0 -\nabla(\nabla u) = 0 \longrightarrow u_{xx} + u_{yy} = 0 (u)=0uxx+uyy=0

(Definition) of Laplacian Operator

Δ u = u x x + u y y = ∇ ∇ u \Delta u = u_{xx} + u_{yy} = \nabla\nabla u Δu=uxx+uyy=u

(Ex04) Wave Equation

u t t − C 2 u x x = 0 u_{tt} - C^2 u_{xx} = 0 uttC2uxx=0

⟶ u ( x , t ) = sin ⁡ ( C t ) cos ⁡ ( x ) \longrightarrow u(x,t) = \sin(Ct) \cos(x) u(x,t)=sin(Ct)cos(x)

⟶ { u t t = − C 2 sin ⁡ ( C t ) cos ⁡ ( x ) u x x = − sin ⁡ ( C t ) cos ⁡ ( x ) \longrightarrow \begin{cases} u_{tt} &= -C^2 \sin(Ct) \cos(x) \\ u_{xx} &= -\sin(Ct)\cos(x) \\ \end{cases} {uttuxx=C2sin(Ct)cos(x)=sin(Ct)cos(x)

(Ex05) Heat Equation

u t − k u x x = 0 u_t - ku_{xx} = 0 utkuxx=0

⟶ u ( x , t ) = e − k t sin ⁡ ( x ) \longrightarrow u(x,t) = e^{-kt} \sin(x) u(x,t)=ektsin(x)

⟶ { u t = − k e − k t sin ⁡ ( x ) u x x = − e − k t sin ⁡ ( x ) \longrightarrow \begin{cases} u_t &= -k e^{-kt}\sin(x) \\ u_{xx} &= -e^{-kt}\sin(x) \end{cases} {utuxx=kektsin(x)=ektsin(x)

(Ex06) Laplacian Equation

u x x + u y y = 0 u_{xx} + u_{yy} = 0 uxx+uyy=0

⟶ u ( x , y ) = x 2 − y 2 \longrightarrow u(x,y) = x^2 - y^2 u(x,y)=x2y2

⟶ { u x x = 2 u y y = 2 \longrightarrow \begin{cases} u_{xx} = 2\\ u_{yy} = 2\\ \end{cases} {uxx=2uyy=2

Thm 01 (Superposition)

If u 1 u_1 u1, u 2 u_2 u2 are solutions of a linear PDEs, then C 1 u 1 + C 2 u 2 C_1u_1+C_2u_2 C1u1+C2u2 for C 1 , C 2 ∈ R C_1,C_2 \in R C1,C2R is also a solution of the PDE.

12.3. Solution of Variables

Wave Equation

u t t − C 2 u x x = 0 u_{tt} - C^2u_{xx} = 0 \\ uttC2uxx=0

Boundary Condtion:

{ u ( 0 , t ) = 0 u ( L , t ) = 0 u ( x , 0 ) = f ( x ) u t ( x , 0 ) = g ( x ) \begin{cases} u(0,t) = 0\\ u(L,t) = 0 \\ u(x,0) = f(x) \\ u_t(x,0) = g(x) \\ \end{cases} u(0,t)=0u(L,t)=0u(x,0)=f(x)ut(x,0)=g(x)

Remark: This is a IBVP (Initial Boundary Value Problem)

u ( x , t ) u(x,t) u(x,t): the displacement at x x x and t t t.

(Idea): Assume that u ( x , t ) = F ( x ) G ( t ) u(x,t) = F(x) G(t) u(x,t)=F(x)G(t), then

{ u t t = F ( x ) G ′ ′ ( t ) u x x = F ′ ′ ( x ) G ( t ) \begin{cases} u_{tt} = F(x)G''(t)\\ u_{xx} = F''(x)G(t) \end{cases} {utt=F(x)G(t)uxx=F(x)G(t)

u t t = C 2 u x x u_{tt} = C^2 u_{xx} utt=C2uxx

⟶ F ( x ) G ′ ′ ( t ) C 2 F ( x ) G ( t ) = F ′ ′ ( x ) G ( t ) F ( x ) G ( t ) \longrightarrow \frac{F(x)G''(t)}{C^2 F(x)G(t)} = \frac{F''(x)G(t)}{F(x)G(t)} C2F(x)G(t)F(x)G(t)=F(x)G(t)F(x)G(t)

⟶ G ′ ′ ( t ) G ( t ) = C 2 F ′ ′ ( x ) F ( x ) = k  (a constant) \longrightarrow \frac{G''(t)}{G(t)} = C^2 \frac{F''(x)}{F(x)} = k \text{ (a constant)} G(t)G(t)=C2F(x)F(x)=k (a constant)

  1. F ′ ′ F = k \frac{F''}{F}= k FF=k iff F ′ ′ − k F = 0 F'' - kF = 0 FkF=0
  2. G ′ ′ C 2 G = K \frac{G''}{C^2G}= K C2GG=K iff G ′ ′ − k C 2 G = 0 G'' - kC^2G = 0 GkC2G=0

Boundary Condition:

u ( 0 , t ) = F ( 0 ) G ( t ) = 0  for any  t u(0,t) = F(0)G(t) = 0 \text{ for any } t u(0,t)=F(0)G(t)=0 for any t

⟶ F ( 0 ) = 0 \longrightarrow F(0) = 0 F(0)=0

u ( L , t ) = F ( L ) G ( t ) = 0  for any  t u(L,t) = F(L)G(t) = 0 \text{ for any } t u(L,t)=F(L)G(t)=0 for any t

⟶ F ( L ) = 0 \longrightarrow F(L) = 0 F(L)=0

Then we get the question w.r.t. only F F F

{ F ′ ′ − K F = 0 F ( 0 ) = 0 F ( L ) = 0 \begin{cases} F'' - KF = 0 \\ F(0) = 0 \\ F(L) = 0 \\ \end{cases} FKF=0F(0)=0F(L)=0

It’s a Sturm-Liouville System

F ( x ) = e r x ⟹ r 2 − k = 0 ⟹ r = ± k F(x) = e^{rx} \Longrightarrow r^2-k=0 \Longrightarrow r = \plusmn\sqrt{k} F(x)=erxr2k=0r=±k

(a) k > 0 ⟹ F ( x ) = C 1 e k x + C 2 e − k x k>0 \Longrightarrow F(x) = C_1 e^{\sqrt{k}x} + C_2 e^{-\sqrt{k}x} k>0F(x)=C1ek x+C2ek x

{ F ( 0 ) = 0 F ( L ) = 0 ⟹ { C 1 = 0 C 2 = 0 ⟹ F ≡ 0 \begin{cases} F(0) = 0\\ F(L) = 0\\ \end{cases} \Longrightarrow \begin{cases} C_1 = 0\\ C_2 = 0\\ \end{cases} \Longrightarrow F \equiv 0 {F(0)=0F(L)=0{C1=0C2=0F0

(b) k = 0 ⟹ F ( x ) = C 1 + C 2 x ⟹ { C 1 = 0 C 2 = 0 ⟹ F ≡ 0 k = 0 \Longrightarrow F(x) = C_1 + C_2 x \Longrightarrow \begin{cases} C_1 = 0\\ C_2 = 0\\ \end{cases} \Longrightarrow F\equiv 0 k=0F(x)=C1+C2x{C1=0C2=0F0

© k &lt; 0 k &lt; 0 k<0 and let k = − p 2 k=-p^2 k=p2 ( p &gt; 0 ) (p&gt;0) (p>0)

r = ± p i F ( x ) = C 1 cos ⁡ ( p x ) + C 2 sin ⁡ ( p x ) F ( 0 ) = C 1 = 0 ⟹ F ( x ) = C 2 sin ⁡ ( p x ) ⟹ F ( L ) = C 2 sin ⁡ ( p L ) = 0 r = \plusmn pi\\ F(x) = C_1 \cos(px) + C_2 \sin(px)\\ F(0) = C_1 = 0 \Longrightarrow F(x) = C_2\sin(px)\\ \Longrightarrow F(L) = C_2 \sin(pL) = 0 r=±piF(x)=C1cos(px)+C2sin(px)F(0)=C1=0F(x)=C2sin(px)F(L)=C2sin(pL)=0

So we have p L = n π pL = n\pi pL=nπ iff p = n π L p=\frac{n\pi}{L} p=Lnπ

Let p n = n π L p_n = n\frac{\pi}{L} pn=nLπ and F n ( x ) = sin ⁡ ( n π L x ) F_n(x) = \sin(n\frac{\pi}{L}x) Fn(x)=sin(nLπx)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值