When we have a function
M
(
x
,
y
)
+
N
(
x
,
y
)
y
′
=
0
M(x,y) + N(x,y)y' = 0
M(x,y)+N(x,y)y′=0
If we take the derivative
M
y
M_y
My and
N
x
N_x
Nx, and they are equal:
M
y
(
x
,
y
)
=
N
x
(
x
,
y
)
M_y(x,y) = N_x(x,y)
My(x,y)=Nx(x,y)
So
∃
\exist
∃ function
f
f
f satisfying
f
x
(
x
,
y
)
=
M
(
x
,
y
)
;
f
y
(
x
,
y
)
=
N
(
x
,
y
)
f_x(x,y) = M(x,y); f_y(x,y) = N(x,y)
fx(x,y)=M(x,y);fy(x,y)=N(x,y)
Note: Each of the functions and direvatives M , N , M y , N x M, N, M_y, N_x M,N,My,Nx has to be continuous on a connected region.
(EX): Solve ( y cos x + 2 x e y ) + ( sin x + x 2 e y − 1 ) y ′ = 0 (y \cos x + 2xe^y) + (\sin x + x^2 e^y - 1) y' = 0 (ycosx+2xey)+(sinx+x2ey−1)y′=0
Solution: Because
M
y
=
cos
x
+
2
x
e
y
N
x
=
cos
x
+
2
x
e
y
M
y
=
N
x
\begin{aligned} M_y &= \cos x + 2xe^y \\ N_x &= \cos x + 2xe^y \\ M_y &= N_x \end{aligned}
MyNxMy=cosx+2xey=cosx+2xey=Nx
This is an exact function.
then we need to solve
f
x
(
x
,
y
)
=
y
cos
x
+
2
x
e
y
⟶
f
(
x
,
y
)
=
y
sin
x
+
x
2
e
y
+
h
(
y
)
⟶
f
y
(
x
,
y
)
=
sin
x
+
x
2
e
y
+
h
′
(
y
)
f
y
(
x
,
y
)
=
sin
x
+
x
2
e
y
−
1
\begin{aligned} f_x(x,y) &= y \cos x + 2xe^y \longrightarrow f(x,y) = y\sin x + x^2e^y + h(y) \longrightarrow f_y(x,y) = \sin x + x^2 e^y + h'(y) \\ f_y(x, y) &= \sin x + x^2e^y - 1 \\ \end{aligned}
fx(x,y)fy(x,y)=ycosx+2xey⟶f(x,y)=ysinx+x2ey+h(y)⟶fy(x,y)=sinx+x2ey+h′(y)=sinx+x2ey−1
then we can get h ( y ) = − y h(y)=-y h(y)=−y
So our final solution is y sin x + x 2 e y − y = c y\sin x + x^2 e^y -y = c ysinx+x2ey−y=c
Proof:
Assume we have ψ ( x , y ) = ψ ( x , y ( x ) ) \psi(x,y) = \psi(x,y(x)) ψ(x,y)=ψ(x,y(x))
∂ ∂ x ψ ( x , y ) = ∂ ψ ∂ x + ∂ ψ ∂ y d y d x \frac{\partial}{\partial x} \psi(x,y) = \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial y}\frac{dy}{dx} ∂x∂ψ(x,y)=∂x∂ψ+∂y∂ψdxdy
ψ = f 1 ( x ) g 1 ( y ) + . . . + f n ( x ) g n ( y ) d ψ d x = f 1 ′ ( x ) g 1 ( y ) + f 1 ( x ) g 1 ′ ( y ) d y d x + . . . + f n ′ ( x ) g n ( y ) + f n ( x ) g n ′ ( y ) d y d x = [ f 1 ′ ( x ) g 1 ( y ) + . . . + f n ′ ( x ) g n ( x ) ] + [ f 1 ( x ) g 1 ′ ( y ) + . . . + f n ( x ) g n ′ ( y ) ] d y d x = ∂ ψ ∂ x + ∂ ψ ∂ y d y d x \begin{aligned} \psi &= f_1(x)g_1(y) + ... + f_n(x) g_n(y) \\ \frac{d\psi}{dx} &= f_1'(x)g_1(y) + f_1(x) g_1'(y) \frac{dy}{dx} + ... + f_n'(x)g_n(y) + f_n(x)g_n'(y)\frac{dy}{dx} \\ &= [f_1'(x)g_1(y) + ... + f_n'(x)g_n(x)] + [f_1(x)g_1'(y) + ... + f_n(x) g_n'(y)]\frac{dy}{dx}\\ &= \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial y}\frac{dy}{dx} \end{aligned} ψdxdψ=f1(x)g1(y)+...+fn(x)gn(y)=f1′(x)g1(y)+f1(x)g1′(y)dxdy+...+fn′(x)gn(y)+fn(x)gn′(y)dxdy=[f1′(x)g1(y)+...+fn′(x)gn(x)]+[f1(x)g1′(y)+...+fn(x)gn′(y)]dxdy=∂x∂ψ+∂y∂ψdxdy
Compare ∂ ψ ∂ x + ∂ ψ ∂ y d y d x \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial y}\frac{dy}{dx} ∂x∂ψ+∂y∂ψdxdy and M ( x , y ) + N ( x , y ) d y d x M(x,y) + N(x,y)\frac{dy}{dx} M(x,y)+N(x,y)dxdy, they look very similar. Therefore it’s reasonable to set M ( x , y ) = ∂ ψ ∂ x , N ( x , y ) = ∂ ψ ∂ y M(x,y) = \frac{\partial \psi}{\partial x}, N(x,y) = \frac{\partial \psi}{\partial y} M(x,y)=∂x∂ψ,N(x,y)=∂y∂ψ.