Exact Differential Equations

When we have a function
M ( x , y ) + N ( x , y ) y ′ = 0 M(x,y) + N(x,y)y' = 0 M(x,y)+N(x,y)y=0

If we take the derivative M y M_y My and N x N_x Nx, and they are equal:
M y ( x , y ) = N x ( x , y ) M_y(x,y) = N_x(x,y) My(x,y)=Nx(x,y)

So ∃ \exist function f f f satisfying
f x ( x , y ) = M ( x , y ) ; f y ( x , y ) = N ( x , y ) f_x(x,y) = M(x,y); f_y(x,y) = N(x,y) fx(x,y)=M(x,y);fy(x,y)=N(x,y)

Note: Each of the functions and direvatives M , N , M y , N x M, N, M_y, N_x M,N,My,Nx has to be continuous on a connected region.

(EX): Solve ( y cos ⁡ x + 2 x e y ) + ( sin ⁡ x + x 2 e y − 1 ) y ′ = 0 (y \cos x + 2xe^y) + (\sin x + x^2 e^y - 1) y' = 0 (ycosx+2xey)+(sinx+x2ey1)y=0

Solution: Because
M y = cos ⁡ x + 2 x e y N x = cos ⁡ x + 2 x e y M y = N x \begin{aligned} M_y &= \cos x + 2xe^y \\ N_x &= \cos x + 2xe^y \\ M_y &= N_x \end{aligned} MyNxMy=cosx+2xey=cosx+2xey=Nx

This is an exact function.

then we need to solve
f x ( x , y ) = y cos ⁡ x + 2 x e y ⟶ f ( x , y ) = y sin ⁡ x + x 2 e y + h ( y ) ⟶ f y ( x , y ) = sin ⁡ x + x 2 e y + h ′ ( y ) f y ( x , y ) = sin ⁡ x + x 2 e y − 1 \begin{aligned} f_x(x,y) &= y \cos x + 2xe^y \longrightarrow f(x,y) = y\sin x + x^2e^y + h(y) \longrightarrow f_y(x,y) = \sin x + x^2 e^y + h'(y) \\ f_y(x, y) &= \sin x + x^2e^y - 1 \\ \end{aligned} fx(x,y)fy(x,y)=ycosx+2xeyf(x,y)=ysinx+x2ey+h(y)fy(x,y)=sinx+x2ey+h(y)=sinx+x2ey1

then we can get h ( y ) = − y h(y)=-y h(y)=y

So our final solution is y sin ⁡ x + x 2 e y − y = c y\sin x + x^2 e^y -y = c ysinx+x2eyy=c

Proof:

Assume we have ψ ( x , y ) = ψ ( x , y ( x ) ) \psi(x,y) = \psi(x,y(x)) ψ(x,y)=ψ(x,y(x))

∂ ∂ x ψ ( x , y ) = ∂ ψ ∂ x + ∂ ψ ∂ y d y d x \frac{\partial}{\partial x} \psi(x,y) = \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial y}\frac{dy}{dx} xψ(x,y)=xψ+yψdxdy

ψ = f 1 ( x ) g 1 ( y ) + . . . + f n ( x ) g n ( y ) d ψ d x = f 1 ′ ( x ) g 1 ( y ) + f 1 ( x ) g 1 ′ ( y ) d y d x + . . . + f n ′ ( x ) g n ( y ) + f n ( x ) g n ′ ( y ) d y d x = [ f 1 ′ ( x ) g 1 ( y ) + . . . + f n ′ ( x ) g n ( x ) ] + [ f 1 ( x ) g 1 ′ ( y ) + . . . + f n ( x ) g n ′ ( y ) ] d y d x = ∂ ψ ∂ x + ∂ ψ ∂ y d y d x \begin{aligned} \psi &= f_1(x)g_1(y) + ... + f_n(x) g_n(y) \\ \frac{d\psi}{dx} &= f_1'(x)g_1(y) + f_1(x) g_1'(y) \frac{dy}{dx} + ... + f_n'(x)g_n(y) + f_n(x)g_n'(y)\frac{dy}{dx} \\ &= [f_1'(x)g_1(y) + ... + f_n'(x)g_n(x)] + [f_1(x)g_1'(y) + ... + f_n(x) g_n'(y)]\frac{dy}{dx}\\ &= \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial y}\frac{dy}{dx} \end{aligned} ψdxdψ=f1(x)g1(y)+...+fn(x)gn(y)=f1(x)g1(y)+f1(x)g1(y)dxdy+...+fn(x)gn(y)+fn(x)gn(y)dxdy=[f1(x)g1(y)+...+fn(x)gn(x)]+[f1(x)g1(y)+...+fn(x)gn(y)]dxdy=xψ+yψdxdy

Compare ∂ ψ ∂ x + ∂ ψ ∂ y d y d x \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial y}\frac{dy}{dx} xψ+yψdxdy and M ( x , y ) + N ( x , y ) d y d x M(x,y) + N(x,y)\frac{dy}{dx} M(x,y)+N(x,y)dxdy, they look very similar. Therefore it’s reasonable to set M ( x , y ) = ∂ ψ ∂ x , N ( x , y ) = ∂ ψ ∂ y M(x,y) = \frac{\partial \psi}{\partial x}, N(x,y) = \frac{\partial \psi}{\partial y} M(x,y)=xψ,N(x,y)=yψ.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值