37. Sudoku Solver
Problem:
Write a program to solve a Sudoku puzzle by filling the empty cells.
A sudoku solution must satisfy all of the following rules:
- Each of the digits 1-9 must occur exactly once in each row.
- Each of the digits 1-9 must occur exactly once in each column.
- Each of the the digits 1-9 must occur exactly once in each of the 9 3x3 sub-boxes of the grid.
Analysis:
我们可以用 backtracking 去解决这个问题,这本质上也是一个暴力求解。我们在第一个空里面填上一个值,确保满足三个条件。然后更新数独,调用原函数求解新的数独,显而易见,这是一个递归问题。
调用 solve() 函数
步骤1: 遍历整个数独,直到发现第一个空格
步骤2: 遍历 1~9,直到发现第一个满足三个条件的数
步骤3: 把这个数填在这个空格中(更新数独),调用 solve() 函数
步骤4: 如果步骤3 返回 true,就说明更新的数独有解,因此继续返回 true 到上层函数。
如果返回 false,就说明更新的数独无解,继续步骤2,直至尝试完9个数
步骤5: 如果遍历完1~9都无法找到合适的数,那就说明当前矩阵无解,返回 false
步骤6: 如果在步骤1中一个空格都没发现,说明数独已经填完,因此返回 true
Solution:
#include <iostream>
#include <vector>
#include "helperlib.hpp"
class Solution {
public:
void solveSudoku(std::vector<std::vector<char>>& board) {
m = board.size();
if (m == 0) return;
n = board[0].size();
if (n == 0 || n != m) return;
bool result =solve(board);
print(result);
}
private:
bool solve(std::vector<std::vector<char>>& matrix)
{
// 步骤1: 遍历整个数独,直到发现第一个空格
for (int i = 0; i < m; ++i)
{
for (int j = 0; j < n; ++j)
{
if (matrix[i][j] == '.')
{
// 步骤2: 遍历 1~9,直到发现第一个满足三个条件的数
for (int k = 1; k < 10; ++k)
{
if (isValid(matrix, i, j, '0' + k))
{
// 步骤3: 把这个数填在这个空格中,再调用 solve() 递归求解更新后的数独
matrix[i][j] = '0' + k;
// 步骤4: 如果步骤3 返回 true,就说明更新的数独有解,因此继续返回 true 到上层函数。
// 如果返回 false,就说明更新的数独无解,继续步骤2,直至尝试完9个数
if (!solve(matrix))
{
matrix[i][j] = '.';
}
else
{
return true;
}
}
}
// 步骤5: 如果遍历完1~9都无法找到合适的数,那就说明当前矩阵无解,返回 false
return false;
}
}
}
// 步骤6: 如果在步骤1中一个空格都没发现,说明数独已经填完,因此返回 true
return true;
}
bool isValid(std::vector<std::vector<char>>& matrix, int i, int j, char k)
{
for (int jj = 0; jj < n; ++jj)
{
if (matrix[i][jj] == k) return false;
}
for (int ii = 0; ii < m; ++ii)
{
if (matrix[ii][j] == k)
{
if (i == 0 && j == 8 && k == '4')
{
print("ii: ");
print(ii);
print_2dmatrix(matrix);
}
return false;
}
}
int gridOrder = i / 3 * 3 + j / 3;
int gridlui = gridOrder / 3 * 3;
int gridluj = gridOrder % 3 * 3;
for (int ii = gridlui; ii < gridlui + 3; ++ ii)
{
for (int jj = gridluj; jj < gridluj + 3; ++jj)
{
if (matrix[ii][jj] == k)
{
return false;
}
}
}
return true;
}
int m;
int n;
};
int main()
{
std::vector<std::vector<char>> sudoku =
{
{'5','3','.','.','7','.','.','.','.'},
{'6','.','.','1','9','5','.','.','.'},
{'.','9','8','.','.','.','.','6','.'},
{'8','.','.','.','6','.','.','.','3'},
{'4','.','.','8','.','3','.','.','1'},
{'7','.','.','.','2','.','.','.','6'},
{'.','6','.','.','.','.','2','8','.'},
{'.','.','.','4','1','9','.','.','5'},
{'.','.','.','.','8','.','.','7','9'}
};
Solution solution;
solution.solveSudoku(sudoku);
print_2dmatrix(sudoku);
}