37. Sudoku Solver

37. Sudoku Solver

Problem:
Write a program to solve a Sudoku puzzle by filling the empty cells.

A sudoku solution must satisfy all of the following rules:

  • Each of the digits 1-9 must occur exactly once in each row.
  • Each of the digits 1-9 must occur exactly once in each column.
  • Each of the the digits 1-9 must occur exactly once in each of the 9 3x3 sub-boxes of the grid.

Analysis:

我们可以用 backtracking 去解决这个问题,这本质上也是一个暴力求解。我们在第一个空里面填上一个值,确保满足三个条件。然后更新数独,调用原函数求解新的数独,显而易见,这是一个递归问题。

调用 solve() 函数
	步骤1: 遍历整个数独,直到发现第一个空格
		步骤2: 遍历 1~9,直到发现第一个满足三个条件的数
			步骤3: 把这个数填在这个空格中(更新数独),调用 solve() 函数
			步骤4: 如果步骤3 返回 true,就说明更新的数独有解,因此继续返回 true 到上层函数。
					   如果返回 false,就说明更新的数独无解,继续步骤2,直至尝试完9个数
		步骤5: 如果遍历完1~9都无法找到合适的数,那就说明当前矩阵无解,返回 false
	步骤6: 如果在步骤1中一个空格都没发现,说明数独已经填完,因此返回 true

Solution:

#include <iostream>
#include <vector>
#include "helperlib.hpp"

class Solution {
public:
    void solveSudoku(std::vector<std::vector<char>>& board) {
        m = board.size();
        
        if (m == 0) return;
        
        n = board[0].size();
        
        if (n == 0 || n != m) return;
        
        bool result =solve(board);
        print(result);
    }

private:
    bool solve(std::vector<std::vector<char>>& matrix)
    {
    	// 步骤1: 遍历整个数独,直到发现第一个空格
        for (int i = 0; i < m; ++i)
        {
            for (int j = 0; j < n; ++j)
            {
                if (matrix[i][j] == '.')
                {
                	// 步骤2: 遍历 1~9,直到发现第一个满足三个条件的数
                    for (int k = 1; k < 10; ++k)
                    {
                        if (isValid(matrix, i, j, '0' + k))
                        {
							// 步骤3: 把这个数填在这个空格中,再调用 solve() 递归求解更新后的数独
                            matrix[i][j] = '0' + k;
                            
                            // 步骤4: 如果步骤3 返回 true,就说明更新的数独有解,因此继续返回 true 到上层函数。
					   		//        如果返回 false,就说明更新的数独无解,继续步骤2,直至尝试完9个数
                            if (!solve(matrix))
                            {
                                matrix[i][j] = '.';
                            }
                            else
                            {
                                return true;
                            }
                        }
                    }
                   // 步骤5: 如果遍历完1~9都无法找到合适的数,那就说明当前矩阵无解,返回 false
                    return false;
                }
            }
        }
        // 步骤6: 如果在步骤1中一个空格都没发现,说明数独已经填完,因此返回 true
        return true;
    }
    
bool isValid(std::vector<std::vector<char>>& matrix, int i, int j, char k)
    {
        for (int jj = 0; jj < n; ++jj)
        {
            if (matrix[i][jj] == k) return false;
        }
        
        
        for (int ii = 0; ii < m; ++ii)
        {
            if (matrix[ii][j] == k)
            {
                if (i == 0 && j == 8 && k == '4')
                {
                    print("ii: ");
                    print(ii);
                    print_2dmatrix(matrix);
                }
                return false;
            }
        }
        
        int gridOrder = i / 3 * 3 + j / 3;
        
        int gridlui = gridOrder / 3 * 3;
        int gridluj = gridOrder % 3 * 3;
        
        for (int ii = gridlui; ii < gridlui + 3; ++ ii)
        {
            for (int jj = gridluj; jj < gridluj + 3; ++jj)
            {
                if (matrix[ii][jj] == k)
                {
                    return false;
                }
            }
        }
        
        return true;
    }
    
    int m;
    int n;
};

int main()
{
    
    std::vector<std::vector<char>> sudoku =
    {
        {'5','3','.','.','7','.','.','.','.'},
        {'6','.','.','1','9','5','.','.','.'},
        {'.','9','8','.','.','.','.','6','.'},
        {'8','.','.','.','6','.','.','.','3'},
        {'4','.','.','8','.','3','.','.','1'},
        {'7','.','.','.','2','.','.','.','6'},
        {'.','6','.','.','.','.','2','8','.'},
        {'.','.','.','4','1','9','.','.','5'},
        {'.','.','.','.','8','.','.','7','9'}
    };
    
    Solution solution;
    
    solution.solveSudoku(sudoku);
    
    print_2dmatrix(sudoku);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值