1001 害死人不偿命的(3n+1)猜想

本文探讨了卡拉兹猜想,一种涉及正整数的操作序列,最终目标是将任意正整数通过特定规则转换为1。文章详细介绍了猜想的规则:对于任意正整数n,如果是偶数则除以2,如果是奇数则计算(3n+1)后再除以2,直至n等于1。并通过一个C语言程序实例,展示了如何计算从给定的n到达1所需的步数。
摘要由CSDN通过智能技术生成

卡拉兹(Callatz)猜想:

对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?

输入格式:

每个测试输入包含 1 个测试用例,即给出正整数 n 的值。

输出格式:

输出从 n 计算到 1 需要的步数。

输入样例:

3

输出样例:

5

思路:这道题就是对整数n不断的判断+操作,如果是偶数,就除以2,如果是奇数,就将(3n+1)除以2,直到n等于为止。最终输出所需要的步数。

#include<stdio.h>


int main()
{
	int n = 0;
	int count = 0;
	while (scanf("%d", &n) != EOF)
	{
		while (n != 1)
		{
			if (n % 2 == 0) {
				n /= 2;
			}
			else if(n % 2 != 0){
				n = (3 * n + 1) / 2;
			}
			count++;
		}
		printf("%d\n", count);
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值