卡拉兹(Callatz)猜想:
对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?
输入格式:
每个测试输入包含 1 个测试用例,即给出正整数 n 的值。
输出格式:
输出从 n 计算到 1 需要的步数。
输入样例:
3
输出样例:
5
思路:这道题就是对整数n不断的判断+操作,如果是偶数,就除以2,如果是奇数,就将(3n+1)除以2,直到n等于为止。最终输出所需要的步数。
#include<stdio.h>
int main()
{
int n = 0;
int count = 0;
while (scanf("%d", &n) != EOF)
{
while (n != 1)
{
if (n % 2 == 0) {
n /= 2;
}
else if(n % 2 != 0){
n = (3 * n + 1) / 2;
}
count++;
}
printf("%d\n", count);
}
return 0;
}