textCNN原理简介与工程实现

textCNN原理简介与工程实现

textCNN是启发于图像处理领域的CNN,将其改造应用于文本领域。原论文是纽约大学Yoon Kim发表于EMNLP 2014的Neural Networks for Sentence Classification;论文中表示,只是简单的在word2vector加入textcnn层,在很多公开数据集的任务上性能都得到了很好的提升。下面从textcnn的原理介绍和代码实现两个方面来具体介绍。

1,textCNN原理介绍

textCNN网络结构很清晰,基本下面这张图就说清楚该模型的模型架构。

textcnn.jpg

卷积神经网络的核心思想是捕捉局部特征,对于文本来说,局部特征就是由若干单词组成的滑动窗口,类似于N-gram。卷积神经网络的优势在于能够自动地对N-gram特征进行组合和筛选,获得不同抽象层次的语义信息。

TextCNN详细过程:

  • Embedding:第一层是图中最左边的7乘5的句子矩阵,每行是词向量,维度=5,这个可以类比为图像中的原始像素点。
  • Convolution:然后经过 kernel_sizes=(2,3,4) 的一维卷积层,每个kernel_size 有两个输出 channel。
  • MaxPolling:第三层是一个1-max pooling层,这样不同长度句子经过pooling层之后都能变成定长的表示。
  • FullConnection and Softmax:最后接一层全连接的 softmax 层,输出每个类别的概率。

通道(Channels):

  • 图像中可以利用 (R, G, B) 作为不同channel;
  • 文本的输入的channel通常是不同方式的embedding方式(比如 word2vec或Glove),实践中也有利用静态词向量和fine-tunning词向量作为不同channel的做法。

一维卷积(conv-1d):

  • 图像是二维数据;
  • 文本是一维数据,因此在TextCNN卷积用的是一维卷积(在word-level上是一维卷积;虽然文本经过词向量表达后是二维数据,但是在embedding-level上的二维卷积没有意义)。一维卷积带来的问题是需要通过设计不同 kernel_size 的 filter 获取不同宽度的视野

2,代码实现

通过现有的集成框架也比较方便的实现textCNN网络架构。

使用pytorch实现如下:

import torch
import torch.nn as nn
import torch.nn.functional as F


class TextCNN(nn.Module):
    def __init__(self, args):
        super(TextCNN, self).__init__()
        self.args = args

        V = args.embed_num
        D = args.embed_dim
        C = args.class_num
        Ci = 1
        Co = args.kernel_num
        Ks = args.kernel_sizes

        self.embed = nn.Embedding(V, D)
        self.convs1 = nn.ModuleList([nn.Conv2d(Ci, Co, (K, D)) for K in Ks])
        '''
        self.conv13 = nn.Conv2d(Ci, Co, (3, D))
        self.conv14 = nn.Conv2d(Ci, Co, (4, D))
        self.conv15 = nn.Conv2d(Ci, Co, (5, D))
        '''
        self.dropout = nn.Dropout(args.dropout)
        self.fc1 = nn.Linear(len(Ks) * Co, C)

    def conv_and_pool(self, x, conv):
        x = F.relu(conv(x)).squeeze(3)  # (N, Co, W)
        x = F.max_pool1d(x, x.size(2)).squeeze(2)
        return x

    def forward(self, x):
        x = self.embed(x)  # (N, W, D)
        x = x.unsqueeze(1)  # (N, Ci, W, D)

        x = [F.relu(conv(x)).squeeze(3)
             for conv in self.convs1]  # [(N, Co, W), ...]*len(Ks)

        x = [F.max_pool1d(i, i.size(2)).squeeze(2)
             for i in x]  # [(N, Co), ...]*len(Ks)

        x = torch.cat(x, 1)

        '''
        x1 = self.conv_and_pool(x,self.conv13) #(N,Co)
        x2 = self.conv_and_pool(x,self.conv14) #(N,Co)
        x3 = self.conv_and_pool(x,self.conv15) #(N,Co)
        x = torch.cat((x1, x2, x3), 1) # (N,len(Ks)*Co)
        '''
        x = self.dropout(x)  # (N, len(Ks)*Co)
        logit = self.fc1(x)  # (N, C)
        return logit

基于Keras深度学习框架的实现代码如下:

import logging

from keras import Input
from keras.layers import Conv1D, MaxPool1D, Dense, Flatten, concatenate, Embedding
from keras.models import Model
from keras.utils import plot_model


def textcnn(max_sequence_length, max_token_num, embedding_dim, output_dim, model_img_path=None, embedding_matrix=None):
    """ TextCNN: 1. embedding layers, 2.convolution layer, 3.max-pooling, 4.softmax layer. """
    x_input = Input(shape=(max_sequence_length,))
    logging.info("x_input.shape: %s" % str(x_input.shape))  # (?, 60)

    if embedding_matrix is None:
        x_emb = Embedding(input_dim=max_token_num, output_dim=embedding_dim, input_length=max_sequence_length)(x_input)
    else:
        x_emb = Embedding(input_dim=max_token_num, output_dim=embedding_dim, input_length=max_sequence_length,
                          weights=[embedding_matrix], trainable=True)(x_input)
    logging.info("x_emb.shape: %s" % str(x_emb.shape))  # (?, 60, 300)

    pool_output = []
    kernel_sizes = [2, 3, 4] 
    for kernel_size in kernel_sizes:
        c = Conv1D(filters=2, kernel_size=kernel_size, strides=1)(x_emb)
        p = MaxPool1D(pool_size=int(c.shape[1]))(c)
        pool_output.append(p)
        logging.info("kernel_size: %s \t c.shape: %s \t p.shape: %s" % (kernel_size, str(c.shape), str(p.shape)))
    pool_output = concatenate([p for p in pool_output])
    logging.info("pool_output.shape: %s" % str(pool_output.shape))  # (?, 1, 6)

    x_flatten = Flatten()(pool_output)  # (?, 6)
    y = Dense(output_dim, activation='softmax')(x_flatten)  # (?, 2)
    logging.info("y.shape: %s \n" % str(y.shape))

    model = Model([x_input], outputs=[y])
    if model_img_path:
        plot_model(model, to_file=model_img_path, show_shapes=True, show_layer_names=False)
    model.summary()
    return model

特征:这里用的是词向量表示方式

  • 数据量较大:可以直接随机初始化embeddings,然后基于语料通过训练模型网络来对embeddings进行更新和学习。

  • 数据量较小:可以利用外部语料来预训练(pre-train)词向量,然后输入到Embedding层,用预训练的词向量矩阵初始化embeddings。(通过设置weights=[embedding_matrix])。

    • 静态(static)方式:训练过程中不再更新embeddings。实质上属于迁移学习,特别是在目标领域数据量比较小的情况下,采用静态的词向量效果也不错。(通过设置trainable=False)
    • 非静态(non-static)方式:在训练过程中对embeddings进行更新和微调(fine tune),能加速收敛。(通过设置trainable=True)

参考文档

1,https://www.cnblogs.com/bymo/p/9675654.html

2,https://github.com/delldu/TextCNN

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是基于PyTorch框架实现TextCNN模型代码,用于文本分类: ```python import torch import torch.nn as nn import torch.nn.functional as F class TextCNN(nn.Module): def __init__(self, vocab_size, embedding_dim, num_classes, num_filters, filter_sizes, dropout_prob): super(TextCNN, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.convs = nn.ModuleList([ nn.Conv2d(in_channels=1, out_channels=num_filters, kernel_size=(fs, embedding_dim)) for fs in filter_sizes ]) self.dropout = nn.Dropout(dropout_prob) self.fc = nn.Linear(num_filters * len(filter_sizes), num_classes) def forward(self, x): x = self.embedding(x) # (batch_size, seq_len, embedding_dim) x = x.unsqueeze(1) # (batch_size, 1, seq_len, embedding_dim) x = [F.relu(conv(x)).squeeze(3) for conv in self.convs] # [(batch_size, num_filters, seq_len - filter_size + 1), ...] x = [F.max_pool1d(conv, conv.size(2)).squeeze(2) for conv in x] # [(batch_size, num_filters), ...] x = torch.cat(x, 1) # (batch_size, num_filters * len(filter_sizes)) x = self.dropout(x) logits = self.fc(x) return logits ``` 其中,`vocab_size`表示词汇表大小,`embedding_dim`表示词向量维度,`num_classes`表示分类数量,`num_filters`表示卷积核数量,`filter_sizes`表示卷积核尺寸列表,`dropout_prob`表示dropout概率。在`forward`函数中,先使用`embedding`层将输入的词id转换为词向量,然后进行卷积和池化操作,最后通过全连接层输出分类结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值