机器学习模型LaTeX公式版:支持向量机

训练数据集
\begin{align*} \\& T = \left\{ \left( x_{1}, y_{1} \right), \left( x_{2}, y_{2} \right), \cdots, \left( x_{N}, y_{N} \right) \right\} \end{align*}
其中,x_{i} \in \mathcal{X} = R^{n}, y_{i} \in \mathcal{Y} = \left\{ +1, -1 \right\}, i = 1, 2, \cdots, Nx_{i}为第i个特征向量(实例),y_{i}为第x_{i}的类标记,当y_{i}=+1时,称x_{i}为正例;当y_{i}= -1时,称x_{i}为负例,\left( x_{i}, y_{i} \right)称为样本点。
线性可分支持向量机(硬间隔支持向量机):给定线性可分训练数据集,通过间隔最大化或等价地求解相应地凸二次规划问题学习得到分离超平面为
\begin{align*} \\& w^{*} \cdot x + b^{*} = 0 \end{align*}
以及相应的分类决策函数
\begin{align*} \\& f \left( x \right) = sign \left( w^{*} \cdot x + b^{*} \right) \end{align*}
称为线型可分支持向量机。
超平面\left( w, b \right)关于样本点\left( x_{i}, y_{i} \right)的函数间隔为
\begin{align*} \\& \hat \gamma_{i} = y_{i} \left( w \cdot x_{i} + b \right) \end{align*}
超平面\left( w, b \right)关于训练集T的函数间隔
\begin{align*} \\& \hat \gamma = \min_{i = 1, 2, \cdots, N} \hat \gamma_{i} \end{align*}
即超平面\left( w, b \right)关于训练集T<script type="math/tex">T</script>中所有样本点\left( x_{i}, y_{i} \right)的函数间隔的最小值。
超平面\left( w, b \right)关于样本点\left( x_{i}, y_{i} \right)的几何间隔为
\begin{align*} \\& \gamma_{i} = y_{i} \left( \dfrac{w}{\| w \|} \cdot x_{i} + \dfrac{b}{\| w \|} \right) \end{align*}
超平面\left( w, b \right)关于训练集T的几何间隔
\begin{align*} \\& \gamma = \min_{i = 1, 2, \cdots, N} \gamma_{i} \end{align*}
函数间隔和几何间隔的关系
\begin{align*} \\& \gamma_{i} = \dfrac{\hat \gamma_{i}}{\| w \|} \\& \gamma = \dfrac{\hat \gamma}{\| w \|} \end{align*}
最大间隔分离超平面等价为求解
\begin{align*} \\& \max_{w,b} \quad \gamma \\ & s.t. \quad y_{i} \left( \dfrac{w}{\| w \|} \cdot x_{i} + \dfrac{b}{\| w \|} \right) \geq \gamma, \quad i=1,2, \cdots, N \end{align*}
等价的
\begin{align*} \\ & \max_{w,b} \quad \dfrac{\hat \gamma}{\| w \|} \\ & s.t. \quad y_{i} \left( w \cdot x_{i} + b \right) \geq \hat \gamma, \quad i=1,2, \cdots, N \end{align*}
等价的
\begin{align*} \\ & \min_{w,b} \quad \dfrac{1}{2} \| w \|^{2} \\ & s.t. \quad y_{i} \left( w \cdot x_{i} + b \right) -1 \geq 0, \quad i=1,2, \cdots, N \end{align*}
线性可分支持向量机学习算法(最大间隔法):
输入:线性可分训练数据集T = \left\{ \left( x_{1}, y_{1} \right), \left( x_{2}, y_{2} \right), \cdots, \left( x_{N}, y_{N} \right) \right\},其中x_{i} \in \mathcal{X} = R^{n}, y_{i} \in \mathcal{Y} = \left\{ +1, -1 \right\}, i = 1, 2, \cdots, N
输出:最大间隔分离超平面和分类决策函数
1. 构建并求解约束最优化问题
\begin{align*} \\ & \min_{w,b} \quad \dfrac{1}{2} \| w \|^{2} \\ & s.t. \quad y_{i} \left( w \cdot x_{i} + b \right) -1 \geq 0, \quad i=1,2, \cdots, N \end{align*}
求得最优解w^{*}, b^{*}
2. 得到分离超平面
\begin{align*} \\ & w^{*} \cdot x + b^{*} = 0 \end{align*}
以及分类决策函数
\begin{align*} \\& f \left( x \right) = sign \left( w^{*} \cdot x + b^{*} \right) \end{align*}
(硬间隔)支持向量:训练数据集的样本点中与分离超平面距离最近的样本点的实例,即使约束条件等号成立的样本点
\begin{align*} \\ & y_{i} \left( w \cdot x_{i} + b \right) -1 = 0 \end{align*}
y_{i} = +1的正例点,支持向量在超平面
\begin{align*} \\ & H_{1}:w \cdot x + b = 1 \end{align*}
y_{i} = -1的正例点,支持向量在超平面
\begin{align*} \\ & H_{1}:w \cdot x + b = -1 \end{align*}
H_{1}H_{2}称为间隔边界。
H_{1}H_{2}之间的距离称为间隔,且|H_{1}H_{2}| = \dfrac{1}{\| w \|} + \dfrac{1}{\| w \|} = \dfrac{2}{\| w \|}
最优化问题的求解:
1. 引入拉格朗日乘子\alpha_{i} \geq 0, i = 1, 2, \cdots, N构建拉格朗日函数
\begin{align*} \\ & L \left( w, b, \alpha \right) = \dfrac{1}{2} \| w \|^{2} + \sum_{i=1}^{N} \alpha_{i} \left[- y_{i} \left( w \cdot x_{i} + b \right) + 1 \right] \\ & = \dfrac{1}{2} \| w \|^{2} - \sum_{i=1}^{N} \alpha_{i} y_{i} \left( w \cdot x_{i} + b \right) + \sum_{i=1}^{N} \alpha_{i} \end{align*}
其中,\alpha = \left( \alpha_{1}, \alpha_{2}, \cdots, \alpha_{N} \right)^{T}为拉格朗日乘子向量。
2. 求\min_{w,b}L \left( w, b, \alpha \right):
\begin{align*} \\ & \nabla _{w} L \left( w, b, \alpha \right) = w - \sum_{i=1}^{N} \alpha_{i} y_{i} x_{i} = 0 \\ & \nabla _{b} L \left( w, b, \alpha \right) = -\sum_{i=1}^{N} \alpha_{i} y_{i} = 0 \end{align*}

\begin{align*} \\ & w = \sum_{i=1}^{N} \alpha_{i} y_{i} x_{i} \\ & \sum_{i=1}^{N} \alpha_{i} y_{i} = 0 \end{align*}
代入拉格朗日函数,得
\begin{align*} \\ & L \left( w, b, \alpha \right) = \dfrac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \left( x_{i} \cdot x_{j} \right) - \sum_{i=1}^{N} \alpha_{i} y_{i} \left[ \left( \sum_{j=1}^{N} \alpha_{j} y_{j} x_{j} \right) \

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值