机器学习模型LaTeX公式版:隐马尔科夫模型

状态集合

Q={ q1,q2,,qN}Q=N

观测集合
V={ v1,v2,,vM}V=M

状态序列
I={ i1,i2,,it,,iT}itQ(t=1,2,,T)

观测序列
O={ o1,o2,,ot,,oT}otV(t=1,2,,T)

状态转移矩阵
A=[aij]N×N

t 时刻处于状态 qi 的条件下,在 t+1 时刻转移到状态 qj 的概率
aij=P(it+1=qj|it=qi)(i=1,2,,N)(j=1,2,,M)

观测概率矩阵
B=[bj(k)]N×M

t 时刻处于状态 qi 的条件下,生成观测 vk 的概率
bj(k)=P(ot=vk|it=qj)(k=1,2,,M)(j=1,2,,N)

初始概率向量
π=(πi)

在时刻 t=1 处于状态 qi 的概率
πi=P(i1=qi)(i=1,2,,N)

隐马尔科夫模型
λ=(A,B.π)

隐马尔科夫模型基本假设:
1. 齐次马尔科夫性假设:在任意时刻 t 的状态只依赖于时刻 t1 的状态。
P(it|it1,ot1,,i1,o1)=P(it|it1)(t=1,2,,T)

2. 观测独立性假设:任意时刻 t 的观测只依赖于时刻 t 的状态。
P(ot|iT,oT,iT1,oT1,,it+1,ot+1,it,it1,ot1,,i1,o1)=P(ot|it)(t=1,2,,T)

观测序列生成算法:
输入:隐马尔科夫模型 λ=(A,B.π) ,观测序列长度 T ;
输出:观测序列 O={o1,o2,,ot,,oT}
1. 由初始概率向量 π 产生状态 i1
2. t=1
3. 由状态 it 的观测概率分布 bj(k) 生成 ot
4. 由状态 it 的状态转移概率分布 aitit+1 生成状态 it+1(it+1=1,2,,N)
5. t=t+1 ;如果 t<T ,转至3.;否则,结束。

隐马尔科夫模型的3个基本问题:
1. 概率计算:已知 λ=(A,B,π) O={ o1,o2,,ot,,oT} ,计算 P(O|λ)
2. 学习:已知 O={ o1,o2,,ot,,oT} ,计算 λ=argmaxP(O|λ)
3. 预测(编码):已知 λ=(A,B.π) O={ o1,o2,,ot,,oT} ,计算 I=argmaxP(I|O,λ)

前向概率

αt(i)=P(o1,o2,,ot,it=qi|λ)

给定模型 λ ,时刻 t 部分观测序列为 o1,o2,,ot 且状态为 qi 的概率。
前向概率递推计算
αt(i)=P(o1,o2,,ot,it=qi|λ)P(it=qi,ot1)=j=1NP(it1=qj,it=qi,ot11,ot)=j=1NP(it=qi,ot|it1=qj,ot11)P(it1=qj,ot11)=j=1NP(it=qi,ot|it1=qj)αt1(j)=j=1NP(ot|it=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值