基于 Python 的招聘信息可视化分析系统

该项目使用Python从招聘网站抓取数据,进行清洗和存储,并通过Flask、Bootstrap和Echarts构建可视化分析系统。系统提供岗位的学历、经验、技能、薪资等多维度分析,地域细化以及热门岗位推荐,并应用决策树预测薪资。用户可以查看各行业岗位数、工作经验与薪资分布、学历与薪资分布等信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 

1. 项目简介 

本项目利用 Python 从某招聘网站抓取海量招聘数据,进行数据清洗和格式化后存储到关系型数据库中(如mysql、sqlite等),利用 Flask + Bootstrap + Echarts 搭建招聘信息可视化分析系统,实现不同岗位的学历要求、工作经验、技能要求、薪资待遇等维度的可视化分析,并根据岗位所在地进行不同地域(华东、华北、华中、华南、西南、西北和东北)维度的细粒度分析。同时依据用户需求实现热门岗位的推荐,并利用决策树算法实现岗位薪资的预测。

        系统于2024年进行迭代升级!最新系统视频如下:

基于 Python 的招聘信息可视化分析系统

 2. 招聘信息

分析某招聘网站的网页结构和接口可以看出,招聘数据可直接通过接口返回的 json 格式数据直接得到,因此采集相对比较简单了,直接模拟接口请求,对返回的数据进行解析即可。

base_url = 'https://search.xxxxx.com/list/000000,000000,0000,00,9,99,%25E5%25BC%2580%25E5%258F%2591,2,{}.html?lang=c&postchannel=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&ord_field=0&dibiaoid=0&line=&welfare='
datas = []

for page in range(1, total_page + 1):
    print('--> 第 {} 页'.format(page))
    url = base_url.format(page)
    headers = {
        'Accept': 'application/json, text/javascript, */*; q=0.01',
        'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 11_1_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36',
        'accept-language': 'zh-CN,zh;q=0.9',
        'cache-control': 'max-age=0',
        'Cookie': 'Your Cookie',
        'Host': 'search.51job.com',
    }
    response = requests.get(url, headers=headers)
    items = response.json()['engine_jds']

    for item in items:
        try:
            job_name = item['job_name']
            hangye = item['companyind_text']
            company = item['company_name']
            salary = item['providesalary_text']

            location = item['attribute_text'][0]
            location = location.split('-')[0]
            location = location.split('_')[0]

            jingyan = item['attribute_text'][1]
            xueli = item['attribute_text'][2]
            zhaopin_counts = 1#item['attribute_text'][3]
            pub_time = item['issuedate']
            datas.append((job_name, hangye, company, location, salary, jingyan, xueli, zhaopin_counts, pub_time))
        except:
            pass

    print('爬取了 {} 条就业数据'.format(len(datas)))

 3. 招聘信息可视化分析系统

3.1 系统注册登录

3.2 招聘数据展示

3.3 各行业招聘岗位数与薪资分布

3.4 不同工作经验的岗位数与平均薪资的分布情况

3.5 不同学历的岗位数与平均薪资的分布情况 

3.6 不同区域热招岗位及其薪资分布情况

3.7 热门岗位推荐

3.8 基于决策树模型的岗位薪资价格预测 

4. 总结

        本项目利用 Python 从某招聘网站抓取海量招聘数据,进行数据清洗和格式化后存储到关系型数据库中(如mysql、sqlite等),利用 Flask + Bootstrap + Echarts 搭建招聘信息可视化分析系统,实现不同岗位的学历要求、工作经验、技能要求、薪资待遇等维度的可视化分析,并根据岗位所在地进行不同地域(华东、华北、华中、华南、西南、西北和东北)维度的细粒度分析。同时依据用户需求实现热门岗位的推荐,并利用决策树算法实现岗位薪资的预测。

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 CSDN 官方提供的学长 QQ 名片 :)

精彩专栏推荐订阅:

1. Python 毕设精品实战案例
2. 自然语言处理 NLP 精品实战案例
3. 计算机视觉 CV 精品实战案例

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python极客之家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值