- 博客(1541)
- 收藏
- 关注
原创 AI智能体开发实战:Supervisor与Swarm模式详解(建议收藏)
文章介绍了AI智能体的设计组件(模型、工具、指令)和两种实现模式(Supervisor和Swarm),包括消息管理、多层结构等实现细节。探讨了智能体运行方式(同步/异步调用、流式输出)及构建障碍和解决方案。最后提供了从模型选择到多智能体团队扩展的实用路线图,帮助开发者系统化构建高效AI智能体系统。
2025-11-04 14:22:04
1864
原创 大模型的训练与应用 | 二十二、DeepSeek API 申请与使用指南
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频,免费分享!
2024-08-01 15:13:51
24076
1
原创 别再只盯着 Prompt 了!上下文工程才是 Agent 爆发的真正推手
从 Chatbot 到 Agent,上下文正从“输入的一部分”进化为“系统状态的集中体现”。未来的 AI 不再仅仅是利用人类数据进行预训练,而是通过与环境的自主交互,在“干中学”中积累经验。上下文工程,正是承载这些“经验”的容器。在 Agent 时代,掌握上下文工程,就是掌握了通往通用人工智能(AGI)的工程钥匙。
2026-01-07 16:47:32
528
原创 爆肝实测!RAG技术让大模型在矿山领域拿到4+级认证?小白程序员也能学会的AI黑科技!
中国信通院联合多家单位编制了检索增强生成标准,煤科总院的"太阳石矿山大模型RAG服务平台"通过评估获得最高4+级。该平台基于RAG技术构建,提供矿山专业智能问答服务,支持联网检索和应急问答,全面评估了知识接入、检索质量、生成答案相关性等能力,为煤炭行业智能化转型提供了AI解决方案。
2026-01-07 16:46:58
499
原创 【AI黑科技】大模型的“知之为知之“之道!自适应滑动窗口让RAG系统告别幻觉,性能开挂!
该研究探讨RAG系统中证据不足时大语言模型是否应"承认不知道"的问题,提出自适应滑动窗口提示策略,将传统RAG重构为顺序化、可中止推理流程。模型按检索分数排序逐段读取文档,判断信息是否充分并决定是否作答。此方法减少token消耗约1.5倍,显著缓解幻觉问题,为"拒答"能力创造显式决策节点,是提高RAG系统可靠性的重要突破。
2026-01-07 16:46:23
325
原创 爆肝300+篇大模型论文后,我悟了!小白程序员也能快速上手的AI开发秘籍
这是一份大模型技术学习资料,浓缩了300+篇论文和一线工程经验,旨在将大模型技术转化为生产力。内容涵盖Prompt工程、微调技术、RAG优化、多Agent协作、生产部署等9大模块60+主题。通过学习可掌握LoRA微调、RAG优化、Agent长期记忆、API封装等实用技能,帮助开发者快速提升大模型应用能力,解决从理论到实践的落地问题。
2026-01-07 16:45:04
271
原创 RAG 效果烂?90% 都是因为这一步没做好!文本分块才是核心命门,这一篇必看!
经过前面两节的学习,我们已经可以精准的提取文档的内容了。接下来就要对提取出来的内容进行“加工处理”。很多开发者在搭建 RAG 系统时,往往把 90% 的精力花在了选择哪个大模型、调优哪种 Embedding 向量上。但等到系统上线一测试,却发现模型经常“胡言乱语”:要么找不到重点,要么回答得支离破碎。其实,问题可能出在你最容易忽略的一步:文档分块(Chunking)。在 RAG 的世界里,如果说大模型是精于烹饪的大厨,那么文档分块就是“备菜”的过程。食材切得太粗,核心滋味(语义)出不来;
2026-01-07 16:43:11
553
原创 别再让 Agent 死记硬背了!深度解析记忆分类学:从“记什么”到“为何记”的底层跃迁!
本文尝试建立一个 Agent 记忆的分类框架。核心维度• 关于用户:个性化的基础• 关于自我:进化的基础• 关于世界:行动的基础• 关于他者:协作的基础辅助维度• 抽象层次:原始 → 事实 → 模式• 时间跨度:工作 → 会话 → 长期• 可共享性:私有 → 可共享 → 公共这些维度交叉,形成了一个完整的分类空间。每一类记忆有不同的特性,需要不同的存储、检索、更新策略。但分类只是起点。权衡:在有限资源下,如何选择优先级动态:如何让记忆系统随时间演化一致。
2026-01-07 16:40:43
832
原创 大模型又双叒叕忘词了?真实对话中的“失忆” Bug,程序员硬核补救方案在此!
微软与Salesforce研究发现,大语言模型在多轮对话中性能平均下滑约39%,出现"对话迷路"现象。研究团队通过实验发现,所有模型在信息逐步补充的对话中表现明显变差,主要表现为过早给出不完整答案、反复重写、遗忘中间信息等问题。研究建议用户尽量一次性提供完整需求,产品团队应增加信息复述机制,而模型厂商则需提升多轮对话的可靠性。这一发现对AI助手开发和实际应用具有重要启示。
2026-01-07 16:39:27
704
原创 LlamaIndex 还是 LangChain?RAG 主流框架深度PK,这篇 2026 全景分析帮你省下一年弯路!
RAG技术从2020年发展至今,已形成从基础到前沿的完整技术谱系。新兴技术如GraphRAG、Agentic RAG等推动了系统性能边界不断扩展,而主流框架的成熟则为不同应用场景提供了多种选择。未来,随着技术与业务场景的深度融合,RAG将继续作为解决大模型知识局限性的核心方案,在企业智能化转型中发挥关键作用。开发者应结合具体需求,理性选择技术路线,确保RAG系统既能解决实际问题,又具备面向未来的扩展能力。
2026-01-07 16:38:26
682
原创 【开发者必看】GPT Image 1.5发布:图像生成速度提升4倍,API开放让创意触手可及!
OpenAI发布GPT Image 1.5图像生成与编辑模型,实现4倍速度提升、更强指令理解与编辑能力,细节真实感显著增强。该模型在多项排行榜超越谷歌Nano Banana Pro,免费开放给所有ChatGPT用户并提供API接口。这标志着AI图像技术从简单生成向可控、可复用的创意生产系统转变,为开发者提供更强大的视觉创作工具。
2026-01-07 16:36:18
732
原创 【干货满满】企业级RAG系统优化全攻略:五大痛点+四大方法,让你的AI助手告别“一本正经地胡说八道“!
企业级RAG系统面临五大挑战,包括数据时效性、上下文断裂、检索局限等。提升精度需从多方面入手:选择优质LLM和嵌入模型、建立评估体系、采用混合检索、引入PageIndex和GraphRAG技术,以及拥抱AI Agent时代的Self-RAG、CRAG和Adaptive RAG等方法,同时优化上下文工程和多模态处理能力。
2026-01-07 16:32:43
788
原创 震惊!Google AI Agent白被我啃完了!原来Chatbot是陪聊的,Agent才是真·打工人!小白必看!
文章解析Google AI Agent白皮书,揭示Agent与传统Chatbot的本质区别:前者是能实际干活的"手",后者只是陪聊的"嘴"。完整Agent包含四大组件:按任务选择的大脑、赋予权限的工具、ReAct推理的行政主管和稳定运行的办公室环境。文章还介绍了防止AI幻觉的Grounding技术和未来多Agent协作趋势,强调技术已成熟,更缺想象力。
2026-01-06 14:53:02
792
原创 AI编程助手天花板揭秘!Anthropic Multi-Agent系统深度解析,小白程序员也能弯道超车!
本文详细解析了Anthropic对AI Agent的理解和实现,重点介绍了Claude Code作为最佳Multi-Agent系统的设计理念与技术细节。内容涵盖上下文检索技术、Agent构建方法、评估系统SWE-Bench、思考工具Think Tool、多代理研究系统架构以及为Agent编写工具的最佳实践。文章强调了将Agent视为用户、设计符合人体工程学的工具接口的重要性,以及通过多代理协作突破单智能体限制的强大能力。
2026-01-06 14:52:01
1673
原创 【颠覆认知】M1/M2机器理论:告别LLM“幻觉“,大模型开发者必学的企业级架构!
本文提出M1/M2机器理论,将机器学习拆解为"学习(L)"与"机器(M)"两个维度。M1聚焦模型校准与部署,M2侧重企业级算法生态构建。批判当前行业对LLM的过度依赖,指出其结构性"幻觉"导致95% AI项目失败。提出基于算法化的联邦式、模块化架构(Strategies-based Agentic AI)才是生产级B2B转型的关键,并通过十年实践验证了该架构的可行性,为Agentic AI的规范化发展提供理论与实践支撑。
2026-01-06 14:51:09
942
原创 [特殊字符]别再卷大模型了!微软官方AI智能体开发教程免费送,10节课带你从小白到大神!
微软推出"AI Agents for Beginners"入门课程,共10节,采用渐进式学习路径,包含图文教程、视频讲解和Python实战代码。课程围绕Azure AI Foundry、Semantic Kernel、AutoGen三大核心技术展开,从基础概念到工具调用、RAG检索增强、多智能体协作等进阶内容,支持中文学习。适合开发者、产品经理等人群,帮助掌握AI Agent开发技能,提升职场竞争力。
2026-01-06 14:47:58
725
原创 AI卷起来了!让你的Agent从“接话“到“独立搬砖“,附超详细实战教程
本文详细介绍Agent(智能体)构建方法,阐述如何让AI从聊天机器人升级为能独立完成复杂工作流的"数字员工"。解析Agent的"三位一体"架构(Model、Tools、Instructions),从单Agent到多Agent系统的演进路径,并强调设置安全护栏的重要性。通过实战指南,开发者可快速掌握Agent构建核心技术,提升AI应用的智能化水平。
2026-01-06 14:47:26
861
原创 从Manus看AI智能体的未来发展:从“任务执行者”到“数字生产力引擎”的进化之路
然而,当ChatGPT等产品逐渐成为日常工具,一个更深层的变革正在悄然发生:AI的角色正从“语言助手”向“自主执行者”跃迁。Manus——全球首款被广泛验证的通用型AI智能体(Agent),不仅是一次技术产品的发布,更是一场关于“人机关系”的范式革命。透过Manus的实践,我们得以清晰地勾勒出AI智能体未来发展的三大核心路径:能力边界突破、场景深度渗透、生态体系重构 。[Agent发展现状-国内外对比]
2026-01-06 14:46:12
626
原创 震惊!AI智能体已颠覆编程范式:从“替代思维“到“增效思维“,2025年开发者必备技能
Manus AI联合创始人张涛重新定义AI智能体,强调其核心是自主性而非简单聊天机器人。智能体三大前沿:工具网络效应导致能力非线性扩展;7x24小时数字员工支持长时任务并行处理;主动性让AI在用户要求前就开始工作。企业应用需从"替代思维"转向"增效思维",跨越信任、工具设计和协作范式三大障碍。2025年起,学会与智能体协作将成为开发者关键技能。---
2026-01-06 14:44:59
800
原创 AI智能体中台:大模型开发的“操作系统“,不懂你就OUT了!
AI Agent智能体中台正成为企业数字转型的关键基础设施,通过五层架构整合分散AI能力,提供统一管控。其核心价值包括模型服务智能路由、工具中心对接外部系统、记忆管理保持上下文连续性、编排引擎支持多Agent协作,以及完善的可观测性治理机制。未来将向多模态融合、边缘计算优化等方向发展,成功公式为70%平台能力+30%业务场景驱动,能将AI能力产品化,提升业务敏捷响应能力。
2026-01-06 14:43:16
772
原创 谷歌重磅报告全解:2026年Agent还会火吗?深度预判未来趋势,收藏这一篇就够了!
如果只有智能没有工具,它只是一个“缸中之脑”(只能聊天);如果只有工具没有智能,它只是一个传统的自动化脚本(RPA)。只有两者 combine(结合),才构成 Agent。
2026-01-06 14:42:43
378
原创 【编程新趋势】AI Agent时代已来临!零基础小白也能开发智能应用,大模型技术不再神秘!
AI Agent代表AI发展的第三阶段,能自主执行复杂工作流。其核心特征包括利用LLM进行决策、调用外部工具、主动纠正错误。适合处理复杂决策、难以维护规则和非结构化数据场景。架构包含模型、工具和指令三要素,正从单智能体向多智能体协作演进。开发中需关注可靠性、可观测性、并行处理和可测试性等工程挑战。2026年或迎来AI Agent普及期。
2026-01-06 14:41:59
584
原创 从Demo到生产:大模型Agent必经的“成长痛“,小白程序员也能懂的Workflow革命
文章揭示了大模型Agent从简单调用到复杂Workflow的工程演进过程。指出早期Agent不可预测性源于控制流缺失而非模型能力不足,强调一次Prompt不等于一次任务执行。Workflow的本质是引入执行语义,使Agent从一次性文本生成器转变为可被调度的执行实体,虽增加工程复杂度但提升了系统可预测性和可靠性。这种转变标志着Agent工程身份的根本变革,为多Agent分布式系统奠定基础。
2026-01-05 15:25:39
683
原创 2025年12月AI大模型TOP20榜单:第7个模型直接写代码,第15个让ChatGPT都颤抖!
AIGCRank发布2025年12月AI产品与大模型热度榜单,基于多维度数据综合评估全球AI创新。榜单涵盖20款热门AI产品(如豆包助手、钉钉AgentOS、Gemini Deep Research等)和20个大模型(如DeepSeek V3.2、GPT-5.2、豆包Seed 1.8等),展示了AI在多模态生成、智能体助手、编程辅助等领域的最新进展,为从业者和开发者提供重要参考。
2026-01-05 15:25:04
939
原创 震惊!Meta数十亿收购Manus:AI创业新思路,不做“造鸡者“,要做“借蛋人“!
Manus公司因专注AI Agent应用开发而非底层模型,被Meta以数十亿美元收购。该公司采用"借蛋人"策略,避开与巨头在参数规模上的竞争,通过工程优化和系统级设计打造高效能智能体。面对地缘政治挑战,公司从北京迁至新加坡,实现全球资源重组。其成功展示了差异化战略、工程思维和全球资源整合的重要性,为AI创业者提供了避开拥挤赛道、专注核心痛点的范本。
2026-01-05 15:23:51
650
原创 【干货】2025大模型技术革命:推理能力、编程智能体、vibe编程,开发者的春天来了!
2025年大模型行业呈现多极化发展格局,中国开源模型(GLM-4.7、Kimi K2等)崛起,与美国闭源模型形成竞争。推理技术成为主流,编程智能体(Claude Code等)大幅提升开发者效率,"vibe编程"让小白也能高效开发。谷歌Gemini超越OpenAI,模型在长任务处理和学术竞赛中表现优异。同时,AI垃圾内容泛滥问题凸显,技术发展与社会影响并存。
2026-01-05 15:22:32
1130
原创 AI Agent技能扩展秘籍:基于Microsoft Framework的实战开发指南,小白也能秒变专家
本文介绍基于Microsoft Agent Framework实现的Agent Skills集成方案,采用渐进式披露设计优化Token使用,通过AIContextProviderFactory模式实现无侵入式集成。项目提供完整安全机制,默认禁用危险操作并采用白名单策略,支持线程序列化和依赖注入。开发者可轻松为AI Agent添加可复用专业技能,使Agent能够完成更复杂任务,源码已开源。
2026-01-05 15:21:54
618
原创 大模型开发者的“降本增效“神器:RAGate技术让AI对话系统聪明到会“偷懒“!
RAGate技术解决传统RAG系统"全时检索"导致的效率低下和噪声干扰问题。通过智能门控机制,RAGate-MHA仅对29%的对话回合进行检索,却实现了比100%检索更好的生成质量和更高置信度,同时降低70%以上计算成本。这项技术让大模型能够自主判断何时需要检索外部知识,实现真正的"降本增效",是开发高效对话系统的关键技术突破。
2026-01-05 15:21:19
492
原创 【硬核干货】Google最新AI Agent白皮书:小白也能秒懂的架构设计,大厂面试通关秘籍!
Google最新AI Agent白皮书详细解析了生成式AI的核心机制、架构设计和实际应用,涵盖智能体分级体系、多智能体协作及提示工程技术。这份资料对AI、机器学习开发者极具参考价值,能帮助理解复杂系统架构,提升面试竞争力,尤其对科技大厂SDE和MLE岗位面试有显著帮助。
2026-01-05 15:20:00
684
原创 小白也能学会!斯坦福团队Multi-Retriever RAG实战,让大模型秒变金融专家
斯坦福团队提出Multi-Retriever RAG方法,通过内部召回器提取财报关键信息和外部召回器获取金融术语定义,结合符号神经生成器和Gemini提示生成器,使大模型在金融问答任务准确率提升至69.4%。研究表明,领域预训练模型优于通用大参数模型,小模型添加外部知识可能有害,而多步推理仍是当前难点。该方案证明垂直数据+轻量召回比堆参数更有效,为专业问答提供了可复制的"双保险"外挂模板。
2026-01-05 15:19:23
619
原创 大模型Agent开发全攻略:从Demo到生产,90%的团队都卡在这一步!
文章通过金融科技公司AI客服翻车案例,揭示从Demo到生产存在的90%坑。提出Agent系统5个层级(基础对话→工具调用→流程编排→智能决策→生产就绪),详解11种设计模式,包括并行化、链式执行、路由、反思、规划等。强调多层护栏、可观测性和优先级调度的重要性,提供上线前自查清单和成熟度评估,帮助开发者构建真正可上线的Agent系统。
2026-01-05 15:18:46
853
原创 震惊!腾讯2B小模型吊打4B大厂!原生Agent技术让小白程序员秒变AI大神!
小尺寸(如 2B 级别)LLM 通常难以完成 Agent 任务,一方面是因为这类任务并非简单的一次性问答,而是需要完成任务拆解、工具理解、工具选择、参数填充、反思优化等一系列动作,难度较大;另一方面是很多系统把Agent能力作为“补丁”在后训练或外部框架上引入,这导致模型很可能仅仅学会了浅层的“模式”而忽略深层的“知识”
2026-01-05 15:17:16
561
原创 大模型RAG竟有三重境界?从入门小白到技术大神,一篇带你彻底吃透!
文章详解了检索增强生成(RAG)技术的三大架构演进:基础RAG通过向量检索实现简单快速查询;Agentic RAG引入智能体概念,具备规划和多步检索能力;Graph-RAG融合知识图谱与强化学习,实现多跳推理和深层逻辑分析。这三种技术分别适用于不同复杂度的场景,从基础问答到知识密集型分析,代表了RAG技术的发展方向,助力AI从信息搬运工升级为智能伙伴。
2026-01-04 15:03:59
603
原创 震惊!原来AI Agent也有“三六九等“,从唐诗剑法到躺尸剑法,小白也能秒懂
本文深入探讨AI Agent三大流派定义,通过"连城剑法"比喻解析技术路线之争。从最小化Agent节点到第一代Workflow再到第二代True Agent,详细拆解Agent发展历程。分析模型演进与Agent发展的共生关系,指出Agent技术泡沫背后的深层价值是倒逼企业完成数字化补课,最终Workflow与Agent将在数字化底座上无缝融合,为通往AGI奠定基础。
2026-01-04 15:03:19
708
原创 【真香警告】别再只做“调包侠“了!这个开源项目让你从大模型调用者蜕变为智能体架构师!
Hello-Agents是Datawhale团队推出的免费AI智能体系统学习教程,帮助开发者从"大模型调用者"转变为"智能体架构师"。项目聚焦"AI Native Agent",通过概念、平台、框架、系统、算法和项目六大模块,提供从理论到实战的完整路径。采用轻量级内核、零依赖手搓代码、渐进式难度设计,包含智能旅行助手等多Agent协作实战案例,适合具备基础Python和LLM API调用能力的开发者学习使用。
2026-01-04 15:02:41
721
原创 LangChain 定义新赛道:Agent Engineering,让 AI 智能体从“能跑“到“可靠“
Agent 工程是将非确定性 LLM 系统迭代优化为可靠生产体验的过程。这是一个循环过程:构建、测试、发布、观察、优化、重复。这里的关键是,发布不是最终目标。它只是你不断前进以获得新见解并改进 Agent 的方式。要做出有意义的改进,你需要了解生产环境中正在发生什么。你越快地完成这个循环,你的 Agent 就会变得越可靠。产品思维工程数据科学两个根本性的转变使 Agent 工程变得必要。首先,LLM 足够强大,可以处理复杂的多步骤工作流。我们一直看到 Agent 承担整个工作,而不仅仅是任务。
2026-01-04 15:01:46
662
原创 【干货】谷歌最新AI Agent技术手册:从“找bug“到“写代码“,你的AI编程搭子已上线!
这篇文章介绍了谷歌官方文档中总结的10个AI Agent商业应用场景。AI Agent不仅是更聪明的聊天机器人,而是能完成一整件事的"数字同事",会找资料、做分析、做决定并执行动作。文章详细介绍了AI Agent在资料查找、文件处理、创意生成、专家速成等场景中的应用,强调AI的下一阶段是更"能干活",未来将是多个Agent协作的时代,最值钱的能力是设计工作流程而非简单写Prompt。
2026-01-04 15:01:14
1002
原创 真香预警!大模型Agent开发全栈教程:从概念到代码,小白也能666地玩转AI智能体
文章系统介绍大模型应用开发中的Agent技术,涵盖概念特征、核心组成部分(大语言模型、记忆系统、工具集等)、ReAct工作流程、技术架构模式、开发关键技术、主流框架、应用场景及最佳实践。从理论到实践全面剖析Agent开发全貌,为AI开发者提供从零入门到进阶的完整指导,助力构建更智能、实用的AI应用。
2026-01-04 15:00:30
820
原创 RAG系统救星!揭秘检索引擎工程黑盒,让AI响应从“分钟级“回到“毫秒级“
本文深入解析RAG系统中被低估的检索引擎,详解亿级向量索引架构(HNSW/IVF/DiskANN)、提升精度的HyDE与上下文块标题技术、以及重排序算法作为质量防线。强调从"体感"转向数学评估的重要性,提供生产级RAG部署清单,揭示检索引擎作为系统"CPU"的关键作用,帮助开发者构建高效AI系统。
2026-01-04 14:59:52
733
原创 AI编程大地震!Meta 20亿收购Manus AI,通用智能体要革开发者的命?
Meta以20亿美元收购通用智能代理公司Manus AI,标志着AI从"对话生成器"向"执行者"的转变。通用智能体被视为下一代计算平台,将终结App时代,实现"机器适应人"的愿景。然而,这一技术面临概率与确定性的结构性悖论、工程落地难题以及缺失统一操作系统等挑战。尽管方向明确,但实现通用智能体仍需解决诸多工程问题,大模型编程开发仍处早期阶段。
2026-01-04 14:59:18
500
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅