使用扣子Coze工作流,制作小红书公众号图文

大家好,我是有思。最近大家刷短视频自媒体的时候,是不是经常看到很多动漫卡通类、情感文案类的图文,就如下面这种图非常多,最重要的是用户觉得不错,点赞评论收藏更是满满。

漫画卡通人物搭配有趣的文案,看起来非常可爱有趣。大家看图片不难发现,很多应该都是AI生成的,现在我教大家一个简易版的制作方法,使用扣子Coze制作。

打开扣子Coze,工作空间——资源库。

右上角资源,创建一个工作流。

选择图片生成,将开始,结束,图片生成节点串联。

开始节点新增2个变量,一个wenan,一个renwu:

图像生成节点中设置模型,输入参数,引用开始的renwu,正向提示词{{input}}。

再添加一个画板,将图片和文字结合。

重新调整节点,将图像生成——画板——结束串联,流程在脑海中过一遍。

画板设置,引入文案和图片元素,在画板中可以看到

双击画板编辑,在窗口中调整画板大小,字体大小等等:

结束节点引入画板data,完成输出操作。

最后试运行,我们输入图片人物描述:一个慈祥的老爷爷;文案内容:小朋友,记住,你是去上班的,不是去受气的。

完整流程跑完如下图:

点击看到我们的结果图文结合。这是一个demo示例,想要更好的效果,大家可以自行调优提示词,这样效果才能符合我们的心理预期。

除此之外,我在小绿书——【花漾时光记】中有很多作品,里面的内容是通过AI文生图、图文的方式做出来的,看起来效果不错,有想要学习的朋友,可以看一下。感谢大家支持!

<think>好的,我现在需要帮用户解决如何使用扣子工具搭建小红书集采工作流的问题。首先,我要回顾用户提供的引用内容,看看里面有没有相关的信息。 用户给的引用1到4都是关于使用扣子Coze)搭建小红书相关的工作流,比如生成爆款文案、段子、梗图等。特别是引用1提到了角色设定、技能和限制,引用2和4提到了工作流的设计目标和结果展示,引用3则讲到大模型节点的使用。这些信息应该能帮助我构建一个集采工作流的步骤。 接下来,我需要明确用户的需求。用户提到“集采工作流”,可能是指集中采集内容或者批量生成内容的工作流小红书的集采可能涉及内容采集、处理、发布等环节。根据引用中的案例,扣子工具可以通过工作流自动化这些步骤。 然后,我应该按照用户的要求,分步骤说明搭建过程。第一步可能需要创建智能体,设定角色和目标,比如内容采集和管理。第二步配置技能模块,可能包括数据抓取、内容分析、格式化输出等。第三步设计工作流,连接不同的节点,比如触发条件、数据处理、大模型生成、存储等。第四步测试和优化,确保工作流运行顺畅。第五步部署和监控,让用户能够实际使用并调整。 需要注意引用中的提示词配置,比如引用1中的角色设定和技能,引用3中的大模型节点配置,这些都需要整合到工作流的设计中。同时,要确保符合小红书的平台风格,使用合适的语言和格式。 可能还需要考虑如何集成外部工具,比如爬虫获取数据,或者图片生成工具,如引用4中的图片效果展示。此外,引用2提到的热门趋势和用户喜好分析,应该在内容处理环节加入,确保采集的内容符合爆款标准。 最后,用户可能需要相关问题的建议,比如性能优化、多平台整合、数据安全等,这些可以作为相关问题部分,帮助用户进一步探索。</think>### 分步教程:使用扣子(Coze)搭建小红书集采工作流 #### 一、核心概念理解 1. **集采工作流定义**:通过自动化流程实现小红书内容批量采集、分析、格式化输出及发布管理[^2][^3] 2. **扣子工具特性**: - 可视化工作流设计界面 - 支持多节点串联(数据采集→处理→输出) - 集成大语言模型优化内容质量[^3] #### 二、搭建步骤详解 1. **创建智能体** ```python # 基础配置示例 agent_config = { "name": "小红书集采处理器1.0", "description": "支持批量采集、智能分类、爆款内容格式化输出", "platform": "小红书" } ``` - 角色设定:具备内容识别、趋势分析、格式转换能力的数字助手[^1] - 限制条件:聚焦内容合规性审查与平台规范适配[^1] 2. **配置技能模块 - 数据采集层: ```python def data_crawler(keywords): # 集成爬虫接口采集目标内容 return raw_data ``` - 内容分析层: ```python def content_analyzer(text): # 调用大模型进行爆款指数评估 return {"trend_score": 0.92, "keywords": [...]} ``` - 输出格式化层: ```python def format_output(content): # 按小红书规范添加话题标签#、emoji符号等[^1] return final_content ``` 3. **工作流设计(节点配置)** ```mermaid graph LR A[触发条件] --> B[数据采集] B --> C[内容清洗] C --> D{质量评估} D -->|达标| E[格式转换] D -->|不达标| F[异常处理] E --> G[存储至数据库] ``` - 关键节点参数配置: $$ \text{质量评估阈值} = \alpha \times \text{互动率} + \beta \times \text{关键词匹配度} $$ 其中$\alpha=0.6$, $\beta=0.4$[^2] 4. **测试与优化 - 测试用例设计: ```python test_cases = [ {"input": "美妆教程", "expected_output": "#美妆分享..."}, {"input": "健身指南", "expected_output": "💪健身干货..."} ] ``` - 优化策略:通过A/B测试调整大模型温度参数$T \in (0,1]$控制输出多样性[^3] 5. **部署与监控 - 设置自动触发条件:每日9:00/12:00/19:00定时执行[^4] - 监控仪表盘指标: $$ \text{处理效率} = \frac{\text{成功处理量}}{\text{总请求量}} \times 100\% $$ #### 三、高级功能扩展 1. **图片处理集成**:调用DALL·E/Midjourney生成配图[^4] 2. **竞品分析模块**:实时对比同类爆款内容特征[^2] 3. **风险控制层**:添加敏感词过滤函数 ```python def content_filter(text): with open('blocked_words.txt') as f: blocked = set(f.readlines()) return any(word in text for word in blocked) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值