吾名爱妃,性好静亦好动。好编程,常沉浸于代码之世界,思维纵横,力求逻辑之严密,算法之精妙。亦爱篮球,驰骋球场,尽享挥洒汗水之乐。且喜跑步,尤钟马拉松,长途奔袭,考验耐力与毅力,每有所进,心甚喜之。
吾以为,编程似布阵,算法如谋略,需精心筹谋,方可成就佳作。篮球乃团队之艺,协作共进,方显力量。跑步与马拉松,乃磨炼身心之途,愈挫愈勇,方能达至远方。愿交志同道合之友,共探此诸般妙趣。诸君,此文尚佳,望点赞收藏,谢之!
关于大模型的微调(Fine-tune)
用一个简单的比喻解释微调的概念。想象你是一个小朋友,你的父亲教你打乒乓球。首先,父亲会给你展示基础的击球方式,让你学习如何把握住球拍、如何看准球、如何打出球,这就像大模型语言的预训练阶段。在这个阶段,你学习了打乒乓球的基本规则的技巧。但是,当你准备参加学校的乒乓球比赛时,你需要一些特殊的训练来提高技巧,比如学习如何更好的发球、如何更好的接对方的球,这就是微调阶段。这个阶段能帮助你更好的适应乒乓球比赛的规则,提高你的比赛成绩。最后,你的教练会观察你在训练中的表现,看看你的发球和接球技巧是否有所提高,这就像评估和调整阶段。如果你在某些方面表现得不好,你的教练可能会调整训练方式,帮助你改进。微调就像是参加乒乓球比赛前的特殊训练,能帮助你从一个会打乒乓球的小朋友,变成一个可以在比赛中赢得胜利的小选手。
那么,是否需要非常高的门槛才可以完成会大模型的微调呢?很幸运的是,微调通过调用api就可以完成。如果你想对GPT模型进行微调,你只需要准备好微调所需的训练数据,例如问题和对应的回答,然后将其整理成专用的JSON格式文件,并发送到微调API即可。等待一段时间之后,你就可以获得一个专属的、微调后的GPT模型。
{"text": "Q: 中国的首都是哪里? A: 北京"}
{"text": "Q: 鲁迅是哪国的著名作家? A: 中国"}
{"text": "Q: 《红楼梦》的作者是谁? A: 曹雪芹"}
这种方式使得微调过程更加简单和方便&