吾名爱妃,性好静亦好动。好编程,常沉浸于代码之世界,思维纵横,力求逻辑之严密,算法之精妙。亦爱篮球,驰骋球场,尽享挥洒汗水之乐。且喜跑步,尤钟马拉松,长途奔袭,考验耐力与毅力,每有所进,心甚喜之。
吾以为,编程似布阵,算法如谋略,需精心筹谋,方可成就佳作。篮球乃团队之艺,协作共进,方显力量。跑步与马拉松,乃磨炼身心之途,愈挫愈勇,方能达至远方。愿交志同道合之友,共探此诸般妙趣。诸君,此文尚佳,望点赞收藏,谢之!
大模型的记忆能力是不可或缺的一部分。目前,有多种方法可以让AI应用具备记忆功能,其中一种是仿照人脑记忆原理,给大模型添加显式记忆。人类的记忆大致可以分为三部分:显式记忆、隐式记忆、外部信息。其中显式记忆可以主动回忆的长期记忆,比如读过的文章,获取显式记忆很容易,但提取时需要一定的回忆过程。隐式记忆是无意识使用的长期记忆,比如骑自行车的技能,获取隐式记忆需要大量重复练习,但使用时毫不费力。可以看出,两种记忆形式在获取和使用的效率上形成了鲜明的互补。
对于大模型而言,其“长期记忆”存储在模型的参数中,短期记忆则体现为模型一次对话中可回忆起的上下文长度的context。例如GPT-4的context是128k,这相当于可一次性输入10万汉字左右。大模型的短期记忆和长期记忆的使用场景如下:
- 短期记忆:
- 多轮对话场景