二叉树面试题汇总(一)

title: 二叉树面试题汇总(一)
categories: 数据结构
date: 2016-08-18 9:16:00

版权声明:本站采用开放的[知识共享署名-非商业性使用-相同方式共享 许可协议]进行许可

所有文章出现的代码,将会出现在我的github中,名字可以根据类全名来找,我在github中的文件夹也会加目录备注。


计算二叉树的总结点数

树的定义:

public class BinaryTree {
    int value;
    BinaryTree leftChild;
    BinaryTree rightChild;

    public BinaryTree(int value) {
        super();
        this.value = value;
    }

    public int getValue() {
        return value;
    }

    public void setValue(int value) {
        this.value = value;
    }

    public BinaryTree getLeftChild() {
        return leftChild;
    }

    public void setLeftChild(BinaryTree leftChild) {
        this.leftChild = leftChild;
    }

    public BinaryTree getRightChild() {
        return rightChild;
    }

    public void setRightChild(BinaryTree rightChild) {
        this.rightChild = rightChild;
    }

}

递归法

思路:

  • 判断传过来的根节点是否为空,若为空直接返回0

  • 把左子树+右子树总数再加上根节点,就是该树的总结点数

  • 那么左子节点总数和右子节点总数怎样使用递归方式求?

  • 每次把递归到的节点的左节点总数+右节点总数+1,其中1是指当前根节点,这样每次递归得到的结果都是当前节点中子节点的总数+当前节点

代码实现:

public class CountNodes {

    /**
     * 使用递归统计树的节点总数
     * 
     * @param root
     * @return
     */
    public static int getCount(BinaryTree root) {
        // 判断根节点是否为空
        if (root == null) {
            // 为空返回0
            return 0;
        } else {
            // 不为空,
            // 递归调用 左子树+右子树
            return getCount(root.getLeftChild())
                    + getCount(root.getRightChild()) + 1;
        }
    }

图解:






测试代码:

public class BinaryTreeCountNodesTest {

    public static void main(String[] args) {
        BinaryTree n1 = new BinaryTree(1);
        BinaryTree n2 = new BinaryTree(2);
        BinaryTree n3 = new BinaryTree(3);
        BinaryTree n4 = new BinaryTree(4);
        BinaryTree n5 = new BinaryTree(5);
        BinaryTree n6 = new BinaryTree(6);

        n1.setLeftChild(n2);
        n1.setRightChild(n3);
        n2.setLeftChild(n4);
        n2.setRightChild(n5);
        n3.setRightChild(n6);

        System.out.println(CountNodes.getCount(n1));
    }
}

运行结果:

循环

思路:

  • 通过把节点存入某个“容器”中实现,这里考虑到要存进去的节点立刻能用,所以考虑队列

  • 判断根节点是否为空,为空返回0;否则存进队列中

  • 定义一个变量count,来记录节点的总数

  • 接下来就是循环判断队列是否为空了

  • 若不为空,首先得到队首的节点,即把头节点出队。

  • 判断头节点的左节点是否为空,不为空,count+1,并且把左节点加入队列

  • 判断头节点的右节点是否为空,不为空,count+1,并且把右节点加入队列

  • 最后返回count

代码实现:

public static int getCountByIteration(BinaryTree root) {
        int count = 1;
        if (root == null) {
            return 0;
        }
        // 创建一个队列,先把传进来的root节点加到队列中
        Queue<BinaryTree> binaryTrees = new LinkedList<BinaryTree>();
        binaryTrees.add(root);
        // 当队列不为空的时候循环
        while (!binaryTrees.isEmpty()) {
            // 把队头节点出列
            BinaryTree currentNode = binaryTrees.remove();
            // 判断有没有子节点,有就把子节点存入队列,并把count加一
            if (currentNode.getLeftChild() != null) {
                count++;
                binaryTrees.add(currentNode.getLeftChild());
            }
            if (currentNode.getRightChild() != null) {
                count++;
                binaryTrees.add(currentNode.getRightChild());
            }
        }
        // 返回总数
        return count;
    }

测试代码:

public class BinaryTreeCountNodesTest {

    public static void main(String[] args) {
        BinaryTree n1 = new BinaryTree(1);
        BinaryTree n2 = new BinaryTree(2);
        BinaryTree n3 = new BinaryTree(3);
        BinaryTree n4 = new BinaryTree(4);
        BinaryTree n5 = new BinaryTree(5);
        BinaryTree n6 = new BinaryTree(6);

        n1.setLeftChild(n2);
        n1.setRightChild(n3);
        n2.setLeftChild(n4);
        n2.setRightChild(n5);
        n3.setRightChild(n6);

        System.out.println(CountNodes.getCountByIteration(n1));
    }

}

运行结果:

计算二叉树的深度

递归

思路:

  • 分别得到左右子节点的深度,取较大值+1 就是该二叉树的深度

  • 其中每个节点都可能有左右子节点

代码实现:

public static int countDeepness(BinaryTree root) {
        // 判断根节点是否为空
        // 为空返回0
        if (root == null)
            return 0;
        int left = countDeepness(root.getLeftChild());
        int right = countDeepness(root.getRightChild());
        // 返回左子节点和右子节点较大数+1,1指当前节点
        return Math.max(left, right) + 1;

    }

图解:

测试代码:

public class BinaryTreeCountNodesTest {

    public static void main(String[] args) {
        BinaryTree n1 = new BinaryTree(1);
        BinaryTree n2 = new BinaryTree(2);
        BinaryTree n3 = new BinaryTree(3);
        BinaryTree n4 = new BinaryTree(4);
        BinaryTree n5 = new BinaryTree(5);
        BinaryTree n6 = new BinaryTree(6);

        n1.setLeftChild(n2);
        n1.setRightChild(n3);
        n2.setLeftChild(n4);
        n2.setRightChild(n5);
        n3.setRightChild(n6);

        System.out.println(CountTheDeepness.countDeepness(n1));
    }

}

运行结果:

迭代

思路:

  • 判断根节点是否为空

  • 定义三个变量,分别为层数,当前层的节点数,下一层的节点数

  • 当队列不为空时,得到当前节点,把当前层节点数-1,判断当前节点有无左右节点,有的话放到队列里,并且修改下一层节点数

  • 当当前层节点数为0时,把深度+1,把当前层移到下一层

public static int countDeepnessByIteration(BinaryTree root) {
        // 判断根节点是否为空
        if (root == null)
            // 为空返回0
            return 0;
        // 定义三个变量,分别为层数,当前层的节点数,下一层的节点数
        int depth = 0, currentLevelNodes = 1, nextLevelNodes = 0;
        // 使用队列来实现
        Queue<BinaryTree> binaryTrees = new LinkedList<BinaryTree>();
        binaryTrees.add(root);
        // 当队列不为空时
        while (!binaryTrees.isEmpty()) {

            // 得到当前节点
            BinaryTree currentNode = binaryTrees.remove();
            // 把当前层节点数-1
            currentLevelNodes--;
            // 判断当前节点有无左右节点
            if (currentNode.getLeftChild() != null) {
                // 有的话放到队列里,并且修改下一层节点数
                binaryTrees.add(currentNode.getLeftChild());
                nextLevelNodes++;
            }

            if (currentNode.getRightChild() != null) {
                binaryTrees.add(currentNode.getRightChild());
                nextLevelNodes++;
            }
            // 当当前层节点数为0时
            if (currentLevelNodes == 0) {
                // 把深度+1
                depth++;
                // 把当前层移到下一层
                currentLevelNodes = nextLevelNodes;
                nextLevelNodes = 0;
            }
        }
        return depth;
    }

测试代码:

package com.xinpaninjava.btree;

public class BinaryTreeCountNodesTest {

    public static void main(String[] args) {
        BinaryTree n1 = new BinaryTree(1);
        BinaryTree n2 = new BinaryTree(2);
        BinaryTree n3 = new BinaryTree(3);
        BinaryTree n4 = new BinaryTree(4);
        BinaryTree n5 = new BinaryTree(5);
        BinaryTree n6 = new BinaryTree(6);

        n1.setLeftChild(n2);
        n1.setRightChild(n3);
        n2.setLeftChild(n4);
        n2.setRightChild(n5);
        n3.setRightChild(n6);

        System.out.println("iteration:"+CountTheDeepness.countDeepnessByIteration(n1));
    }

}

运行结果:

【全文完】


(1)非递归定义 树(tree)是由n(n≥0)个结点组成的有限集合。n=0的树称为空树;n>0的树T: ① 有且仅有一个结点n0,它没有前驱结点,只有后继结点。n0称作树的根(root)结点。 ② 除结点外n0 , 其余的每一个结点都有且仅有一个直接前驱结点;有零个或多个直接后继结点。 (2)递归定义 一颗大树分成几个大的分枝,每个大分枝再分成几个小分枝,小分枝再分成更小的分枝,… ,每个分枝也都是一颗树,由此我们可以给出树的递归定义。 树(tree)是由n(n≥0)个结点组成的有限集合。n=0的树称为空树;n>0的树T: ① 有且仅有一个结点n0,它没有前驱结点,只有后继结点。n0称作树的根(root)结点。 ② 除根结点之外的其他结点分为m(m≥0)个互不相交的集合T0,T1,…,Tm-1,其中每个集合Ti(0≤i<m)本身又是一棵树,称为根的子树(subtree)。 2、掌握树的各种术语: (1) 父母、孩子与兄弟结点 (2) 度 (3) 结点层次、树的高度 (4) 边、路径 (5) 无序树、有序树 (6) 森林 3、二叉树的定义 二叉树(binary tree)是由n(n≥0)个结点组成的有限集合,此集合或者为空,或者由一个根结点加上两棵分别称为左、右子树的,互不相交的二叉树组成。 二叉树可以为空集,因此根可以有空的左子树或者右子树,亦或者左、右子树皆为空。 4、掌握二叉树的五个性质 5、二叉树的二叉链表存储。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值