3.17做题记录

这篇博客探讨了树上交错路径的性质及其在计算权值中的应用,介绍了如何通过范德蒙德卷积优化算法。同时讲解了网格问题中利用匈牙利算法解决二分图匹配的高效方法,并展示了在线段树问题上的动态规划策略,以及处理语言共通性问题的树剖与区间覆盖技术。
摘要由CSDN通过智能技术生成
T229860 A. 迁到题

考虑对于树上的一条边,如果他的子树内有黑白点且子树外有黑白点,那么这两对黑白点肯定会经过这个边形成交错路,这样权值更大(相较子树内的两个人自己连)

所以一条边的贡献为子树内黑白点个数的较小值+子树外黑白点个数的较小值,求这个的期望就好了

这样就可以得到 O ( n m 2 ) O(nm^2) O(nm2)的做法,得到70pts

观察到这个式子中关于x和y有很多相似的部分,考虑使用范德蒙德卷积计算
在这里插入图片描述
在这里插入图片描述代码

T229861 B. 网格

如果一个点u的周围有小于它的值的点v,可以之间把u指向v,权值为val[u]-val[v]
如果一个点u周围有等于它权值的点v,那么u和v一定在同一个偶环上(根据黑白染色可证是偶数个点的环),那么也相当于可以进行二分图匹配

所以我们用匈牙利算法竟然可以跑过 1 0 5 10^5 105,因为每个点的度数最大为4,很稀疏

代码

P5280 [ZJOI2019]线段树

我们肯定不能依次计算每个线段树上的tag个数
而是应该在一个线段树上依次进行dp,设 f i , j f_{i,j} fi,j表示线段树上进行前 i 次操作后,所有线段树上 j 点的标记个数
把线段树上的点分成以下五类分类讨论:
1.能经过但不完全修改的点
2.能经过且完全修改的点
3.经过该点的另一半,也就是没被经过但是会得到标记下传的点
4.不能经过但完全修改的点
5.不能经过且完全不修改的点
在这里插入图片描述分别转移即可,注意第三类需要额外记录一个 g i , j g_{i,j} gi,j表示前 i 次操作后,多少个线段树1-j都没有标记,方便转移

代码

P5327 [ZJOI2019]语言

考虑每个点能和多少个点有共同的语言,求和除以二就是答案
先对树大力树剖一下,可以用二维坐标表示能否有共同语言,那么一段路径修改就成为了区间覆盖,共计 l o g 2 log^2 log2个矩形,扫描线面积并,复杂度三只log
如果我们给每个点维护一棵权值线段树,然后把路径差分一下,相当于线段树上的区间修改,维护又多少个非0位置,然后线段树合并即可,复杂度两个log

代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值