- 博客(20)
- 收藏
- 关注
原创 2022互联网暑期实习笔面结果记录
流水账快手3.14投递3.17简历挂(不合适)美团3.16 投递3.19 笔试(120分钟):一共五道编程题,多是字符串和数组,第四道的回溯算法没写上来。前两道AC,第三道82%,第四道没做,第五道没写完。3.21 电话约面试时间,约在了3.25上午11点面试。3.25 面试八股和算法都很简单,算法甚至是合并两个有序链表,但是写得不好。华为3.16 投递3.22 发邮件通知笔试3.23 笔试 (晚七点,两小时)。通过。3.25 通知面试时间为周六晚八点网易3.1
2022-05-19 20:27:15 561
原创 高频大数据面试算法题整理与解析
目录找相同找高频找相同题目:a、b两文件各存放50亿个url,找共同的url。解:由于文件太大一次性无法处理,因此应首先分治:hash(url) % 500,将a文件和b文件都分成500个子文件。因为两个文件采用同一个规则哈希,所以相同的url会进入相同的小文件。用HashSet先遍历小a,再对小b中遍历看是否已存在,已存在的就是重复的。找高频题目:大文件里有很多词,返回频数最高的一百个词。难点:要记录频次解:先分治,hash(x)%2000,分成2000个子文件;每个文件中用H
2022-05-12 22:07:47 529
原创 Java笔试常用工具整理
目录写在前面基本结构输入输出输入输出字符串StringStringBuilderStringBuffer数组动态数组ArrayListLinkedList集合(HashSet)哈希表(HashMap)栈(Stack)队列(Queue)常用算法框架写在前面最近在准备暑期实习的笔试,特把Java常用的工具记录在这。除了前面的各种工具类之外,最后部分还记录了一些算法框架。参考内容有,刷题必备:java常用函数。基本结构lang包是默认import的,所以不用特意写;除lang包之外,util包最为常用,
2022-03-19 18:43:40 1114
原创 最常考的Java后台面试题(三)JVM
目录总览JVM的内存结构计数器栈堆方法区垃圾回收如何知道一个对象的死活常用的垃圾回收算法进入老年代的条件空间担保机制几种引用几种垃圾收集器单线程的串行垃圾收集器吞吐量优先的多线程并行的垃圾收集器CMSG1类加载JMM总览参考内容:Java面试小抄JVM内存结构(一)Java基础(二)Java集合(三)JVM(四)Java并发(五)MySQL(六)计算机网络(七)操作系统JVM的内存结构执行引擎把字节码翻译成机器码。计数器计数器就为线程服务的。一个栈对应一个线程,但每个线程
2022-03-08 20:52:39 245
原创 最常考的Java后台面试题(二)Java集合
目录总览概述常见的集合ArrayList底层实现常用方法ArrayList和Vector的区别?ArrayList和Array的区别?ArrayList和LinkedList的区别?HashMap底层实现常用方法HashMap的负载因子为什么是0.75?HashMap的寻址方法?HashMap的扩容方法?为什么HashMap线程不安全?ConcurrentHashMap原理其他总览参考内容:Java面试小抄(一)Java基础(二)Java集合(三)JVM(四)Java并发(五)MySQL(
2022-03-06 20:31:03 262
原创 最常考的Java后台面试题(一)Java基础
什么是面向对象?面向对象的封装、继承、多态指的是什么?Java为什么可以“Write Once, Run any Where”?JVM、JRE和JDK的关系是什么?引用数据类型和基本数据类型的关系?this关键字?static关键字?抽象类和接口的关系?final、finally和finalize的区别?重写和重载的关系?
2022-02-28 20:50:42 623
原创 Python+Opengl实现用B样条曲线在方块上实时交互写字
目录引言依赖画方块屏幕坐标转换为世界坐标B样条曲线绘制完整代码引言博主是北京理工大学计算机2021级研一的学生,这项任务是计算机图形学这门课程的第一个大作业。由于之前并未接触过opengl,所以在完成这个作业过程中费了一些劲。因为网上找不到符合老师需求的代码,所以代码都是自己拼拼凑凑整的,可能仍有不规范之处。当然,这篇博客是在这门课全结束之后才发布的。依赖python3.9opengl库估计python3.7、3.8也都行,但没试过。具体导入库的代码如下:from OpenGL.GL i
2021-11-16 20:51:08 843
原创 我用过的cmd和Linux服务器命令(持续更新)
用到的命令再查有些麻烦,所以做个记录。必要时可查看:Linux 常用命令及快速记忆方法pwd命令是什么的缩写_一些常用命令及其记忆方法cmd改变文件目录change directorycd 地址上传文件到服务器scp -P 6000 -r Market-Pytorch qianxiang@47.93.21.4:/home/qianxiang/data在文件所在的目录下打开git bash,注意将上述命令的本地文件夹和目标文件夹进行修改。命令输入后会要求输入密码,密码是:qxxxx
2021-10-20 10:50:22 134
原创 【Leetcode】1两数之和;2两数相加;7整数反转;9回文数;13罗马数字转整数;14最长公共前缀
目录引言题目示例解答(1)(2)引言自觉自己算法或者说叫代码能力过弱,于是决定自此之后每天刷Leetcode上的题。这个不可能有什么人会看,只是自己学习的一个记录。希望自己能坚持下来。题目示例解答(1)(2)...
2021-09-29 17:18:06 137
原创 语音文字识别基本原理和经典综述
文章目录0 引言1 发展历程2 基本原理3 语言模型3.1 n-gram3.2 RNN4 声学模型的传统模型5 声学模型的深度学习模型5.1 DNN5.26 声学模型的端到端模型6.1 CTC6.2 Seq2Seq0 引言这是北理计算机研究生的大数据课程的汇报作业,我负责这一部分的讲述,故通过整理这个博客来梳理一些下周一的讲演思路。1 发展历程2 基本原理我录了一句自己说这句话时的音频,将这一段音频转化为声音的波形图就如下图所示。第一个波峰就是“嗨”字,后面的三个紧凑的波峰也就是剩下的三个
2021-09-26 17:12:26 3394
原创 【Mark一下】行人重识别、模式识别、矩阵分解
目录0 引言1 模式识别2 有遮挡的行人或物体识别3 矩阵计算及分解3.1 子空间(Subspace)3.2 稀疏表示(Sparse Representations)3.2 矩阵分解(Matrix Decomposition)4 结束语参考文献:0 引言我昨晚在溜达北京城的时候,老师突然发过来一条微信:千想,临时想到一个问题Mark一下供参考,对于有遮挡的行人或者物体识别,或者泛化为不全的模式识别问题。是否可以从矩阵计算的角度,引入某个矩阵分解方式去把整个图片分成:没被遮挡的公共的在多个图片中
2021-09-15 17:19:07 420
原创 【读懂论文4】YOLO系列重点说明
目录概述YOLO原理损失函数的设计YOLOv2YOLOv3YOLOv4YOLOv5参考概述YOLO原本是一句英语中的常用口语“You Only Live Once”的缩写,意思是人只活一次别太顾忌太多。而在这篇论文中,作者引用这个并把"Live"改成"Look",表示这个方法是只看一次的一步(one-stage)方法。相比于之前的以R-CNN为代表的二阶段法,YOLO这种一阶段的目标检测的显著特点就是快,超级快(extremely fast)。下面将着重介绍YOLO的原理和后续几个版本的更新所在何处
2021-09-07 20:20:56 468
原创 【读懂论文3】RCNN系列重点说明
目录RCNN概述目标检测mAP方法原理Fast RCNNFaster RCNNMask RCNN参考后记RCNN论文地址:Rich feature hierarchies for accurate object detection and semantic segmentation概述RCNN相对于之前的算法将mAP值提高了30% ,是后来目标检测领域的老大哥。目标检测对图像进行处理可以依据难易程度分为三个层次,分别是分类(classification)、检测(detection)和分割(seg
2021-08-29 17:42:14 198
原创 【已解决】在pycharm上给Linux远程服务器配置ssh interpreter出现错误:can‘t obtain python version
问题原因直接将在windows安装好的anaconda3文件夹远程传输到服务器,造成anaconda版本的不匹配。解决办法将原先传输到服务器的anaconda3文件夹删去,重新向服务器传输Linux上的.sh文件。直接在这个网址用清华大学开源软件镜像站下载最新的Linux版本的anaconda.sh文件。接下来在远程服务器上安装Anaconda并创建python环境、安装pytorch(Linux)这篇博客中一步步安装并配置。最后就可以回到pycharm安装与配置SSH远程服务器这篇博客去配置i
2021-08-02 23:57:42 1536
原创 【读懂论文2】VGG!片到块的优雅升级!
VGG网络是AlexNet的一个升级,简单来说,VGG将原先的“卷积层”变成了“卷积块”。而所谓的“块”,其实也就是好几层的叠加而已,而这简单的叠加却显著提升了结果。论文地址:VERY DEEP CONVOLUTIONAL NETWORKS特点特点是显著且简单的,就是把好几层3乘3的卷积层叠加在一起,或者说更深层变块以VGGG-16中最多的3层3*3卷积层堆叠块为例,在初始图像用卷积层提取一遍特征之后,第二层对这一层提取的特征继续用卷积层提取特征。如下如所示。这样会带来两个好处:感.
2021-08-01 21:33:36 170
原创 【读懂论文1】:AlexNet!深度学习大爆炸的奇点!
ImageNet Classification with Deep Convolutional Neural Networks
2021-07-27 15:05:18 397
原创 卷积神经网络难点梳理
目录1 基本概念及原理1.1 基本概念1.2 基本原理2 卷积是怎么“卷”的2.1 数学中的卷积2.2 CNN中的卷积3 损失函数是怎样当好指挥官的4 梯度下降、反向传播和显卡参考内容1 基本概念及原理1.1 基本概念概念名称目的操作示意图卷积(Convolution)提取特征将图像矩阵遍历乘以卷积核矩阵并输出池化(Pooling)降低数据量对小块矩阵中的所有数取平均(平均池化)或者取最大(最大池化)并只输出一个值,再遍历激活(Activation)对
2021-07-22 17:03:33 1499
原创 卷积是怎么“卷”的
1 数学中的卷积卷积的英文为Convolution,其中的词根Convolute有使卷绕、使盘旋的意思。卷积公式为F(t)=∫−∞∞f(τ)g(t−τ)dτ.F(t)=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau.F(t)=∫−∞∞f(τ)g(t−τ)dτ.其中,“卷”表示把函数g(τ)g(\tau)g(τ)翻转成g(t−τ)g(t-\tau)g(t−τ)。在时域下考虑[1]中给出的例子。f(.)f(.)f(.)代表一个不稳定的输入,可以理解为进食
2021-07-22 16:50:49 715
原创 2021-07-18
写在最前将学习路径以博客的形式记录下来应该是个不错的选择,一方面促进学习的自觉,另一方面我也可以在记录过程中总结消化所学的内容。因此,我将把我接下来全部的学习过程变成一篇一篇的博客。希望自己可以坚持下来。一点思考接下来两年的研究生生活,我将义无反顾地跳进深度学习这个大坑,所以近一段时间我了解了很多相关的知识内容。有一点我所关注的今天突然有了一点思考。深度学习自从2012年AlexNet那篇文章开启新一股热潮以来,发展到现在好像出现了一点点的瓶颈。具体表现上大概是过度依赖标注数据集、对遮挡或者加了对
2021-07-18 18:47:51 196 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人