简介
内容简介
本书作为 CDA LEVEL Ⅱ考试教材,打破传统的知识整合模式,从 EDIT(探索、诊断、指导和工具)数字化工作模型的角度进行讲解,在介绍知识概念的同时,还讲解了在进行商业策略数据分析时应遵循的整体思维和思考方式,以达到业务宏观分析与用户微观洞察相结合、使用科学的方式进行数据分析的教学目标。
作者简介
CDA数据科学研究院
2013年,大数据行业方兴未艾,CDA数据科学研究院孕育而生,是国内率先成立的专注于数据科学领域的专业研究团队。CDA数据科学研究院汇集数据行业专家,团队具有专业的学术素养、精湛的研究水平、扎实的企业实战经验,丰富的行业资源,通过对各类企业、社会组织等进行全面、系统、深入的调查和访问,从而获得紧跟技术发展的经验与数据,并结合数据行业的未来发展方向进行系统的研究,不断研发新的知识体系和技术应用。
- 第1 章 EDIT 模型概述. 1
- 1.1 探索阶段 4
- 1.2 诊断阶段 5
- 1.3 指导阶段 8
- 1.4 工具支持 9
- 1.5 本章练习题 10
- 第2 章 数据处理 12
- 2.1 使用pandas 读取结构化数据 .13
- 2.1.1 读取数据 .14
- 2.1.2 写出数据 .17
- 2.2 数据整合 17
- 2.2.1 行、列操作 .17
- 2.2.2 条件查询 .21
- 2.2.3 横向连接 .24
- 2.2.4 纵向合并 .27
- 2.2.5 排序 .30
- 2.2.6 分组汇总 .31
- 2.2.7 拆分列 .35
- 2.2.8 赋值与条件赋值 .36
- 2.3 数据清洗 39
- 2.3.1 重复值处理 .39
- 2.3.2 缺失值处理 .40
- 2.4 本章练习题 43
- 第3 章 指标体系与数据可视化. 45
- 3.1 Python 可视化 45
- 3.1.1 Matplotlib 绘图库 .45
- 3.1.2 Seaborn 绘图库.54
- 3.2 描述性统计分析与绘图 60
- 3.2.1 描述性统计进行数据探索 .6