PCA思想
- PCA 将高维的数据通过线性变换投影到低维空间上去。
- 投影思想:找出最能够代表原始数据的投影方法。被 PCA 降掉的那些维度只能是那些噪声或是冗余的数据。
- 去冗余:去除可以被其他向量代表的线性相关向量,这部分信息量是多余的。
- 去噪声:去除较小特征值对应的特征向量,特征值的大小反映了变换后在特征向量方向上变换的幅度,幅度越大,说明这个方向上的元素差异也越大,要保留。
- 对⻆化矩阵:寻找极大线性无关组,保留较大的特征值,去除较小特征值,组成一个投影矩阵,对原始样本矩阵进行投影,得到降维后的新样本矩阵。
- 完成 PCA 的关键是 —— 协方差矩阵。协方差矩阵,能同时表现不同维度间的相关性以及各个维度上的方差。协方差矩阵度量的是维度与维度之间的关系,而非样本与样本之间。
- 之所以对⻆化,因为对⻆化之后非对⻆上的元素都是 0 ,达到去噪声的目的。对⻆化后的协方差矩阵,对⻆线上较小的新方差对应的就是那些该去掉的维度。所以我们只取那些含有较大能量 ( 特征值 ) 的维度,其余的就舍掉,即去冗余。
PCA可解决训练数据中存在数据特征过多或特征累赘的问题。核心思想是将 m 维特征映射到 n 维( n < m ),这 n 维形成主元,是重构出来最能代表原始数据的正交特征。
假设数据集是 m 个 n 维,
(
x
(
1
)
,
x
(
2
)
,
⋯
,
x
(
m
)
)
(\boldsymbol x^{(1)}, \boldsymbol x^{(2)}, \cdots, \boldsymbol x^{(m)})
(x(1),x(2),⋯,x(m)) 。如果
n
=
2
n=2
n=2 ,需要降维到
n
′
=
1
n'=1
n′=1 ,现在想找到某一维度方向代表这两个维度的数据。下图有
u
1
,
u
2
u_1, u_2
u1,u2 两个向量方向,但是哪个向量才是我们所想要的,可以更好代表原始数据集的呢?
从图可看出,
u
1
u_1
u1 比
u
2
u_2
u2 好,为什么呢?有以下两个主要评价指标:
- 样本点到这个直线的距离足够近。
- n样本点在这个直线上的投影能尽可能的分开。
如果我们需要降维的目标维数是其他任意维,则:
- 样本点到这个超平面的距离足够近。
- 样本点在这个超平面上的投影能尽可能的分开。
PCA算法推理
下面以基于最小投影距离为评价指标推理:
假设数据集是 m 个 n 维,
(
x
(
1
)
,
x
(
2
)
,
.
.
.
,
x
(
m
)
)
(x^{(1)}, x^{(2)},...,x^{(m)})
(x(1),x(2),...,x(m)) ,且数据进行了中心化。经过投影变换得到新坐标为
w
1
,
w
2
,
.
.
.
,
w
n
{w_1,w_2,...,w_n}
w1,w2,...,wn ,其中
w
w
w 是标准正交基,即
∣
w
∣
2
=
1
| w |_2 = 1
∣w∣2=1 ,
w
i
T
w
j
=
0
w^T_iw_j = 0
wiTwj=0 。
经过降维后,新坐标为 w 1 , w 2 , . . . , w n { w_1,w_2,...,w_n } w1,w2,...,wn ,其中 n ′ n' n′ 是降维后的目标维数。样本点 x ( i ) x^{(i)} x(i) 在新坐标系下的投影为 z ( i ) = ( z ( i ) 1 , z ( i ) 2 , . . . , z ( i ) n ′ ) z^{(i)} = \left(z^{(i)}1, z^{(i)}2, ..., z^{(i)}{n'} \right) z(i)=(z(i)1,z(i)2,...,z(i)n′) ,其中 z ( i ) j = w j T x ( i ) z^{(i)}j = w^T_jx^{(i)} z(i)j=wjTx(i) 是 x ( i ) x^{(i)} x(i) 在低维坐标系里第 j 维的坐标。
如果用 z ( i ) z^{(i)} z(i) 去恢复 x ( i ) x^{(i)} x(i) ,则得到的恢复数据为 x ^ ( i ) = ∑ n ′ j = 1 x ( i ) j w j = W z ( i ) \widehat{x}^{(i)} = \sum^{n'}{j=1} x^{(i)}j w_j = Wz^{(i)} x (i)=∑n′j=1x(i)jwj=Wz(i) ,其中 W W W 为标准正交基组成的矩阵。
考虑到整个样本集,样本点到这个超平面的距离足够近,目标变为最小化
∑
i
=
1
m
∣
x
^
(
i
)
−
x
(
i
)
∣
2
2
\sum^m_{i=1}|\hat{x}^{(i)} - x^{(i)} |^2_2
∑i=1m∣x^(i)−x(i)∣22。对此式进行推理,可得:
在推导过程中,分别用到了 x ‾ ( i ) = W z ( i ) \overline{x}^{(i)} = Wz^{(i)} x(i)=Wz(i) ,矩阵转置公式 ( A B ) T = B T A T (AB)^T = B^TA^T (AB)T=BTAT , W T W = I W^TW = I WTW=I , z ( i ) = W T x ( i ) z^{(i)} = W^Tx^{(i)} z(i)=WTx(i) 以及矩阵的迹,最后两步是将代数和转为矩阵形式。
由于
W
W
W 的每一个向量
w
j
w_j
wj 是标准正交基,
∑
m
i
=
1
x
(
i
)
(
x
(
i
)
)
T
\sum^m{i=1} x^{(i)} \left( x^{(i)} \right)^T
∑mi=1x(i)(x(i))T 是数据集的协方差矩阵,
∑
m
i
=
1
(
x
(
i
)
)
T
x
(
i
)
\sum^m{i=1} \left( x^{(i)} \right)^T x^{(i)}
∑mi=1(x(i))Tx(i) 是一个常量。最小化
∑
i
=
1
m
∣
x
^
(
i
)
−
x
(
i
)
∣
2
2
\sum^m_{i=1} | \hat{x}^{(i)} - x^{(i)} |^2_2
∑i=1m∣x^(i)−x(i)∣22 又可等价于
利用拉格朗日函数可得到
对 W W W 求导,可得 − X X T W + λ W = 0 -XX^TW + \lambda W = 0 −XXTW+λW=0 ,也即 X X T W = λ W XX^TW = \lambda W XXTW=λW 。 X X T XX^T XXT 是 n ′ n' n′个特征向量组成的矩阵, λ \lambda λ 为 X X T XX^T XXT 的特征值。 W W W 即为我们想要的矩阵。
对于原始数据,只需要
z
(
i
)
=
W
T
X
(
i
)
z^{(i)} = W^TX^{(i)}
z(i)=WTX(i) ,就可把原始数据集降维到最小投影距离的
n
′
n'
n′ 维数
据集。
PCA算法流程总结
输入:
n
n
n 维样本集
D
=
(
x
(
1
)
,
x
(
2
)
,
.
.
.
,
x
(
m
)
)
D = \left( x^{(1)},x^{(2)},...,x^{(m)} \right)
D=(x(1),x(2),...,x(m)) ,目标降维的维数
n
′
n'
n′ 。
输出:降维后的新样本集
D
′
=
(
z
(
1
)
,
z
(
2
)
,
.
.
.
,
z
(
m
)
)
D' = \left( z^{(1)},z^{(2)},...,z^{(m)} \right)
D′=(z(1),z(2),...,z(m)) 。
主要步骤如下:
- 对所有的样本进行中心化, x ( i ) = x ( i ) − 1 m ∑ j = 1 m x ( j ) x^{(i)} = x^{(i)} - \frac{1}{m} \sum^m_{j=1} x^{(j)} x(i)=x(i)−m1∑j=1mx(j) 。
- 计算样本的协方差矩阵 X X T XX^T XXT 。
- 对协方差矩阵 X X T XX^T XXT 进行特征值分解。
- 取出最大的 n ′ n' n′ 个特征值对应的特征向量 w 1 , w 2 , . . . , w n ′ { w_1,w_2,...,w_{n'} } w1,w2,...,wn′ 。
- 标准化特征向量,得到特征向量矩阵 W W W 。
- 转化样本集中的每个样本 z ( i ) = W T x ( i ) z^{(i)} = W^T x^{(i)} z(i)=WTx(i) 。
- 得到输出矩阵
D
′
=
(
z
(
1
)
,
z
(
2
)
,
.
.
.
,
z
(
n
)
)
D' = \left( z^{(1)},z^{(2)},...,z^{(n)} \right)
D′=(z(1),z(2),...,z(n)) 。
注 :在降维时,有时不明确目标维数,而是指定降维到的主成分比重阈值 k ( k ϵ ( 0 , 1 ] ) k(k \epsilon(0,1]) k(kϵ(0,1]) 。
假设 n n n 个特征值为 λ 1 ⩾ λ 2 ⩾ . . . ⩾ λ n \lambda_1 \geqslant \lambda_2 \geqslant ... \geqslant \lambda_n λ1⩾λ2⩾...⩾λn ,
则 n ′ n' n′ 可从 ∑ n ′ i = 1 λ i ⩾ k × ∑ n i = 1 λ i \sum^{n'}{i=1} \lambda_i \geqslant k \times \sum^n{i=1} \lambda_i ∑n′i=1λi⩾k×∑ni=1λi 得到。
PCA算法主要优缺点
优点
- 仅仅需要以方差衡量信息量,不受数据集外的因素影响.
- 各主成分之间正交,可消除原始数据成分间的相互影响的因素
- 计算方法简单,主要运算是特征值分解,易于实现
缺点
- 主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强
- 方差小的非主成分也可能含有对样本差异的重要信息,因维度丢弃可能对后续数据处理有影响
降维的必要性及目的
必要性
- 多重共线性和预测变量之间相互关联.多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯
- 高维空间本身具有稀疏性.一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有2%
- 过多的变量,对查找规律造成冗余麻烦
- 仅在变量层面上分析可能会忽略变量之间的潜在联系.例如几个预测变量可能落入仅反映数据某一方面特征的一个组内
目的
- 减少预测变量的个数
- 确保这些变量是相互独立的
- 提供一个框架来解释结果.相关特征,特别是重要特征更能在数据中明确的显示出来;如果只有两维或者三维的话,更便于可视化展示
- 数据在低维下更容易处理,更容易使用
- 去除数据噪声
- 降低算法运算开销