概率图模型5:无向图入门

作者:孙相国

定义1:因子与辖域

假定\(D\)表示随机变量集合,因子\(\phi\)定义为从\(Val(D)\)映射到实数域\(R\)的一个函数。假如因子的所有表值均非负,那么这个因子称为非负的。变量集\(D\)称为因子的辖域.

具体来讲,你可以简单地把因子想象为集合\(D=\{X_1,X_2,\cdots,X_n\}\)的联合概率(当然,未必是联合概率,也可能是其他形式的局部概率,等等)特别的,令\(X,Y,Z\)为三个不相交的变量集,且令\(\phi_1(X,Y),\phi_2(Y,Z)\)是两个因子。因子的乘积\(\phi_1 \times \phi_2\)定义为新的因子:\(\psi:Val(X,Y,Z) \mapsto \mathbb{R}\):

\(\psi(X,Y,Z)=\phi_1(X,Y)\times\phi_(Y,Z)\),关于因子的更多介绍,我们在上一篇博文中讲贝叶斯网络的时候,详细讨论过。这里不再多做解释。

定义2:成对、局部和全局马尔科夫性

以下内容引自李航《统计学习方法》
这里写图片描述
这里写图片描述
这里写图片描述

定义3:概率无向图模型

这里写图片描述

定义4:吉布斯分布与无向图因子分解

假如分布\(P_\phi\)定义为:
\[ P_\phi(X_1,X_2,\cdots,X_n)=\frac{1}{Z}\hat{P_\phi}(X_1,X_2,\cdots,X_n)\tag{1} \]

其中:

\(P_\hat{P_\phi}(X_1,X_2,\cdots,X_n)=\phi_1(D_1)\times\phi_2(D_2)\times \cdots \times\phi_m(D_m)\),\(D_i\)为变量集合的一个划分。

\(Z=\sum_{X_1,\cdots,X_n}\hat{P_\phi}(X_1,X_2,\cdots,X_n)\),为规范化因子。

则,分布\(P_\phi\)成为因子集\(\phi={\phi_1(D_1),\cdots,\phi_k(D_k)}\)参数化的吉布斯分布

特别的,如果上面的定义中\(D_i\)为无向图的最大团。那么式子\((1)\)即为无向图联合概率分布的因子分解。函数\(\phi_i(D_i)\)称为势函数,通常要求为严格正的,一般定义为:
\[ \phi_i(D_i)=exp\{-E(D_i)\}\tag{2} \]
上述论断又称为Hammersley-Clifford定理

转载于:https://www.cnblogs.com/xiangguosun/p/6785388.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值