概率图模型4:贝叶斯网络

作者:孙相国

转载请注明出处

概率图模型主要研究四方面问题:

  1. 表示
  2. 推理
  3. 学习

在本系列博文中,我们将按照下面的路线进行陈述:

  1. 首先我们研究贝叶斯网络和无向图网络的最基本的概念。

  2. 在此基础上,我们分出两个分支,一个是以贝叶斯网络为基础,一个是以无向图为基础,讨论学习问题:

  3. 最后我们将会研究一些关于推理方面的知识.

0. 参考文献

[1] 概率图模型原理与技术(中文版)

[2] probabilistic graphical models(概率图模型原理与技术 英文版)

[3] 机器学习 周志华

[4] 统计学习方法 李航

[5] csdn博客:http://blog.csdn.net/github_36326955

[6] 模式识别

1.1 为什么要研究贝叶斯网络?

对于一个联合概率分布,我们需要跟多个独立变量来表示,甚至独立变量的个数会呈现指数级的增长。例如,考虑\(P\left(X_1,X_2,X_3,\cdots,X_n\right)\),假如,每一个\(X_i\)都是二项分布的话。这样联合概率里面就有至少\(2^n-1\)个参数(对应的是\(X_1,\cdots,Xn\)的全排列数目减一,减掉1是因为最后一种情况可以用1减掉之前的所有概率)。因此我们希望通过建立联合概率与图的关联,从图中找到条件独立性论断(并且我们可以证明,图中的条件独立性论断在联合概率中都是成立的。),这样就可以将原始的联合概率写成多个独立因子的乘积,从而减少独立变量的个数,使得模型更加“紧凑”。例如,如果我们可以建立一个概率图,并且从中发现了如下的独立性论断:
\[ \left(X_i \perp X_{-i}|C\right) \]
其中\(X_{-i}\)表示\(\{X_1,\cdots,X_n\}-\{X_i\}\),那么\(P\left(C,X_1,X_2,X_3,\cdots,X_n\right)\)可以写成:
\[ P\left(C\right)\Pi_{i=1}^nP\left(X_i|C\right) \]
注意到每一个\(P\left(X_i|C_j\right)\)都有两种情况(对应1个参数),因此公式\((2)\)的参数个数只有\(2n+1\)个。

事实上,这种假设太强,但是仍然在很多应用的价值。接下来您将会看到,基于这种独立性假设建立的概率图表示模型,就是朴素贝叶斯模型。

"紧凑",在这里的具体含义是:经过独立性约间的式子(2),其独立参数个数小于原始的联合概率分布形势下独立参数个数。

1.2 朴素贝叶斯模型

单纯的介绍朴素贝叶斯模型和对应的概率图,并没有什么价值。事实上,关于朴素贝叶斯的定义,1.1节几乎已经介绍得很充分了。具体来说,在公式\((1)\)中,我们把\(C={c_1,\cdots,c_k}\)看做样本的类别。把\(X_i\)看做样本的第\(i\)个维度的特征。那么,朴素贝叶斯假设的实际意义就很明显了:朴素贝叶斯模型假设在给定样本实例的类别的条件下,不同的性质可以独立的确定。

这里写图片描述

在本节,我们将要介绍的,是与朴素贝叶斯模型相关的一个机器学习算法:朴素贝叶斯法。它在文本分类中经常被使用(参见作者博文《python 中文文本分类》)。

1.2.1 基本方法

正如你在1.1节看到的公式\((2)\)所表达的一样,公式\((2)\)是对联合概率的一个计算。运用贝叶斯定理,我们可以很轻易的求得:
\[ P\left( C=c_k|X_{1:n}\right)=\frac{P\left(C=c_k\right)\Pi_{i=1}^nP\left(X_i|C=c_k\right)}{\sum_CP\left(C=c_j\right)\Pi_{i=1}^nP\left(X_i|C=c_j\right)} \]
公式\((3)\)表达了对于给定观测样本,其属于类别\(c_k\)的概率。因此朴素贝叶斯分类器可以表示为:
\[ y=f\left(X_{1:n}\right)=\arg max_{c_k}\frac{P\left(C=c_k\right)\Pi_{i=1}^nP\left(X_i|C=c_k\right)}{\sum_CP\left(C=c_j\right)\Pi_{i=1}^nP\left(X_i|C=c_j\right)} \]
考虑到分母对所有样本是相同的,因此,可以进一步规约为:
\[ y=f\left(X_{1:n}\right)=\arg max_{c_k}P\left(C=c_k\right)\Pi_{i=1}^nP\left(X_i|C=c_k\right) \]
从常理上看,朴素贝叶斯分类器把样本实例分到后验概率最大的类别,是很自然的,也是符合我们的认知的(你可以在作者这篇博文中找到更详细的解释《深入浅出EM算法与实践(持续更新)》)。那么,除了从感性的角度认为这种分类策略有道理外,我们能不能从更严谨的角度去考察这种分类策略的合理性呢?答案是可以的,事实上,朴素贝叶斯的分类策略,等价于期望风险最小化(更多的论述,读者可以参考其他文献,例如李航博士的《统计学习方法》4.1.2,这里不再赘述)。

1.2.2 参数估计

从公式\((5)\)可以看到,我们需要估计的参数有\(P\left(C=c_k\right)\)\(P\left(X_i=x_i|C=c_k\right)\)

由于这些概率事实上都是可以从样本集合中估计出来的,所以整个估计策略并不复杂。只是对样本做了一些基本的统计(极大似然估计)。例如:
\[ P\left(C=c_k\right)=\frac{\sum_{i=1}^nI\left(y_i = c_k\right)}{n},k=1,2,\cdots,K \]

\[ P\left(X_i=x_i|C=c_k\right)=\frac{\sum_{i=1}^nI\left(X_i=x_i|C=c_k\right)}{\sum_{i=1}^nI\left(C=c_k\right)} \]

其中\(I\left(.\right)\)为指示函数。

需要注意的是:公式\((6,7)\)都是基于现有的样本做统计的。那么,如果碰巧某类情况在样本中没有出现(事实上这种情况是很常见的,因为机器学习处理的数据是小规模的),那么就有可能遭遇某类概率为0的情况。因此,我们需要对公式做一个平滑处理:
\[ P\left(C=c_k\right)=\frac{\sum_{i=1}^nI\left(y_i = c_k\right)+\lambda}{n+K\lambda},k=1,2,\cdots,K;\lambda \geqslant 0 \]
特别的,当\(\lambda = 1\)时,成为拉普拉斯平滑。

通过对分子分母加一个系数,我们实现了概率的平滑处理。事实上,在很多其他研究中,我们还有其他的办法让我们的概率“平滑”,一个最经典的例子就是将特征加权后,送入到logistic函数中。我们就可以很自然地得到一个人工构造的概率。更详细的内容,请参阅作者的博客《logistic回归

1.2.3 python实现

从前几个小节的介绍来看,朴素贝叶斯分类器的实现,并不复杂。在scikit-learn库中,有直接的函数可以调用。只是这个库中的函数,为我们指定了公式\((5)\)中的类条件概率分布的形式(比如可能是高斯分布,或者伯努利分布等)。关于scikit-learn库中相应函数的使用,你可以参考作者的博文《python 中文文本分类》。这里给出的代码,是没有指定任何分布,仅仅根据公式\((7,8)\)得到的。

实例代码托管在GitHub上:

实例代码

1.3 图与分布

1.3.1基本任务

贝叶斯网图的形式化语义是一系列的独立性断言(\(\mathcal{I}\left(\mathcal{G}\right)\),见定义1)。另一方面它又是由条件概率分布做注释的图,并通过链式法则为贝叶斯网定义了一个联合分布(\(P\))。本小节接下来的工作就是证明这两者的等价,即如下命题成立:\(A\Leftrightarrow B\),其中:

A: 分布\(P\)满足与图\(G\)相关的局部独立性。

B: \(P\)可以由与图\(G\)相关的一系列条件概率分布表示。

换言之,若\(P\)可以由图\(\mathcal{G}\)蕴含的的一系列条件概率表示时,那么\(\mathcal{G}\)中的所有条件独立性都在\(P\)的所有条件独立性集合中,反之亦然。在接下来的内容里,你将会看到,A所表达的意涵就是I-Map,B所表达的意涵叫做因子分解。我们接下来首先给出几个基本概念。然后在此基础上进行命题的证明。

1.3.2基本定义

定义 1(贝叶斯网的语义)

贝叶斯网结构\(\mathcal{G}\)是其节点代表随机变量\(X_1,\cdots,X_n\)的一个有向无圈图(DAG)。令\(Pa_{X_i}^\mathcal{G}\)表示\(X_i\)\(\mathcal{G}\)中的父节点,\(NonDescendants_{X_i}\)在图中的非后代节点变量。

因此\(\mathcal{G}\)表示了如下称为局部独立性的条件独立性假设,并且记为\(\mathcal{I}_\mathcal{l}\left(\mathcal{G}\right)\):

对每一个变量\(X_i\):\(\left(X_i \perp NonDescendants_{X_i}|Pa_{X_i}^\mathcal{G}\right)\)

话句话是说,局部独立性表明,在给定父节点的条件下,每个节点\(X_i\)与其非后代节点条件独立。

定义 2(I-Map)

\(\mathcal{G}\)为一个网络图,记\(\mathcal{I}\left(\mathcal{G}\right)\)为这个网络图\(\mathcal{G}\)中蕴含的所有形如\(\left(X\perp Y|Z\right)\)的独立性断言集合。

\(P\)为一个分布,记\(\mathcal{I}\left(P\right)\)为在\(P\)中成立的所有形如\(\left(X\perp Y|Z\right)\)的独立性断言集合。

若$\mathcal{I}\left(\mathcal{G}\right)\subseteq \mathcal{I}\left(P\right) \(,则称\)\mathcal{G}$是一个I-Map(独立图)。

定义2 事实上描述了我们证明任务的前半部分,即:分布\(P\)满足与图\(\mathcal{G}\)相关的局部独立性。正如我们从包含关系中所看到的:任何由\(\mathcal{G}\)断言的独立性,在\(P\)中必然成立;\(P\)中成立的独立性,未必能够体现在图\(\mathcal{G}\)中。接下来,我们需要对证明任务的后半部分形式化定义:\(P\)可以由与图\(\mathcal{G}\)相关的一系列条件概率分布表示。

定义3 (因子分解)

\(\mathcal{G}\)为定义在变量\(X_1,\cdots,X_n\)上的一个贝叶斯网络。假如\(P\)可以表示为如下乘积:
\[ P\left(X_1,\cdots,X_n\right)=\Pi_{i=1}^nP\left(X_i|Pa_{X_i}^\mathcal{G}\right) \]
则称分布\(P\)是关于图\(\mathcal{G}\)的在同一空间上的因子分解。这个式子叫做贝叶斯网的链式法则,单个因子\(P\left(X_i|Pa_{X_i}^\mathcal{G}\right)\)称为条件概率分布(CPD)或局部概率模型

定义3 事实上描述了我们证明任务的后半部分,即:\(P\)可以由与图\(\mathcal{G}\)相关的一系列条件概率分布表示。正如我们从定义1中所看到的,\(\mathcal{G}\)中蕴含了如下的独立性论断:\(\mathcal{I}_\mathcal{l}\left(\mathcal{G}\right)=\{ \left(X_i \perp NonDescendants_{X_i}|Pa_{X_i}^\mathcal{G}\right):X_i \in X_{1:n} \}\)。我们假定\(X_1,X_2,\cdots,X_n\)的顺序就是图\(\mathcal{G}\)的一个拓扑序。那么:
\[ P\left(X_1,\cdots,X_n\right)=P\left(X_1\right)P\left(X_2|X_1\right)P\left(X_3|X_1,X_2\right)\cdots P\left(X_n|X_1,\cdots,X_{n-1}\right) \]
其中公式\((10)\)对任何联合分布都是适用的。由于\(X_1,X_2,\cdots,X_n\)是图\(\mathcal{G}\)的一个拓扑序,因此对于式子\((10)\)中的任意一项\(P\left(X_i|X_1,\cdots,X_{i-1}\right)\),有${X_1,\cdots,X_{i-1}}= Pa_{X_i}^\mathcal{G} \cup Z, Z \subseteq NonDescendants_{X_i} \(,根据独立性论断\)\mathcal{I}\mathcal{l}\left(\mathcal{G}\right)\(,有\)P\left(X_i|X_1,\cdots,X{i-1}\right)=P\left(X_i|Pa_{X_i}^\mathcal{G}\right)\(,进而有公式\)(9)$.

由定义3,我们可以给出贝叶斯网络的定义:

定义4(贝叶斯网)

一个贝叶斯网是一个偶对\(\mathcal{B} =\left(\mathcal{G},P\right)\),其中\(P\)\(\mathcal{G}\)上的因子分解,并且\(P\)指定为关联在\(\mathcal{G}\)上节点的一系列条件概率分布,通常记为\(P_\mathcal{B}\)

接下来,本文将对1.3.1节中的两个命题做等价性证明,这两个命题是:

A: 分布\(P\)满足与图\(\mathcal{G}\)相关的局部独立性。

B: \(P\)可以由与图\(\mathcal{G}\)相关的一系列条件概率分布表示。

我们首先证明\(A\Rightarrow B\),再证明\(A\Leftarrow B\).

1.3.3 A=>B

\(A\Rightarrow B\)的语义表述为:

\(\mathcal{G}\)是定义在变量集\(\mathcal{X}\)上的一个贝叶斯网络,并且\(P\)是同一个空间上的联合分布。如果\(\mathcal{G}\)\(P\)的一个I-map,那么\(P\)根据\(\mathcal{G}\)因子分解。

证明:

假定\(X_1,X_2,\cdots,X_n\)的顺序就是图\(\mathcal{G}\)的一个拓扑序。

由概率的链式法则有:
\[ P\left(X_1,\cdots,X_n\right)=P\left(X_1\right)P\left(X_2|X_1\right)P\left(X_3|X_1,X_2\right)\cdots P\left(X_n|X_1,\cdots,X_{n-1}\right) \]
由于\(\mathcal{G}\)为I-map,因此\(\mathcal{G}\)中蕴含了如下的独立性论断:\(\mathcal{I}_\mathcal{l}\left(\mathcal{G}\right)=\{ \left(X_i \perp NonDescendants_{X_i}|Pa_{X_i}^\mathcal{G}\right):X_i \in X_{1:n} \}\).且\(\mathcal{I}_\mathcal{l}\left(\mathcal{G}\right)\subseteq \mathcal{I}\left(P\right)\)

由于\(X_1,X_2,\cdots,X_n\)是图\(\mathcal{G}\)的一个拓扑序,因此对于式子\((11)\)中的任意一项\(P\left(X_i|X_1,\cdots,X_{i-1}\right)\)\(X_i\)的所有父节点都在集合\(\{X_1,\cdots,X_{i-1}\}\)中,并且这个集合不存在任何\(X_i\)的后代节点,即:${X_1,\cdots,X_{i-1}}= Pa_{X_i}^\mathcal{G} \cup Z, Z \subseteq NonDescendants_{X_i} \(,根据独立性论断\)\mathcal{I}\mathcal{l}\left(\mathcal{G}\right)\(和条件独立性分解性质,有:\)P\left(X_i|X_1,\cdots,X{i-1}\right)=P\left(X_i|Pa_{X_i}^\mathcal{G}\right)\(,进而有公式\)(9)$.

得证

1.3.4 B=>A

\(B\Rightarrow A\)的语义表述为:

\(\mathcal{G}\)是定义在变量集\(\mathcal{X}\)上的一个贝叶斯网络,并且\(P\)是同一个空间上的联合分布。如果\(P\)根据\(\mathcal{G}\)因子分解,那么\(\mathcal{G}\)\(P\)的一个I-map。

证明:

为了证明命题成立,只需证明:

\(P\left(X_i | NonDescendants_{X_i},Pa_{X_i}^\mathcal{G}\right)=P\left(X_i |Pa_{X_i}^\mathcal{G}\right)\)

同样假定\(X_1,X_2,\cdots,X_n\)是图\(\mathcal{G}\)的一个拓扑序.令\(NonDescendants_{X_i}=\{X_{n_1},X_{n_2},\cdots,X_{n_k}\}\)其中,\(\{X_{n_1},X_{n_2},\cdots,X_{n_k}\}\)\(\{X_1,X_2,\cdots,X_{i-1}\}\)中的子集.令\(Pa_{X_i}^\mathcal{G}=\{N_1,\cdots,N_m\},N_i \in \{X_1,X_2,\cdots,X_n\}\)

则:
\[ P\left(X_i | NonDescendants_{X_i},Pa_{X_i}^\mathcal{G}\right)=\frac{P\left(X_i, X_{n_1},X_{n_2},\cdots,X_{n_k},N_1,\cdots,N_m\right )}{P\left( X_{n_1},X_{n_2},\cdots,X_{n_k},N_1,\cdots,N_m\right )} \]
上式的分子可以由因子分解的定义写成:
\[ P\left(X_i|Pa_{X_i}\right)P\left(X_{n_1}|Pa_{X_{n_1}} \right )\cdots P\left(X_{n_k}|Pa_{X_{n_k}} \right )P\left(N_1|Pa_{N_1} \right )P\left(N_2|Pa_{N_2} \right )\cdots P\left(N_m|Pa_{N_m} \right )\]
其中,上式所有的\(Pa_M\)都不含\(X_i\)

式子\((12)\)分母可以写成:
\[ \sum_{x_i}P\left(X_i, X_{n_1},X_{n_2},\cdots,X_{n_k},N_1,\cdots,N_m\right )\]
进一步地,对式子\((14)\)写成式子\((13)\)的形式则为:
\[ P\left(X_{n_1}|Pa_{X_{n_1}} \right )\cdots P\left(X_{n_k}|Pa_{X_{n_k}} \right )P\left(N_1|Pa_{N_1} \right )P\left(N_2|Pa_{N_2} \right )\cdots P\left(N_m|Pa_{N_m} \right )\sum_{x_i}P\left(X_i|Pa_{X_i}\right)\]
其中\(\sum_{x_i}P\left(X_i|Pa_{X_i}\right)=1\),因此式子\((15)\)变为:
\[ P\left(X_{n_1}|Pa_{X_{n_1}} \right )\cdots P\left(X_{n_k}|Pa_{X_{n_k}} \right )P\left(N_1|Pa_{N_1} \right )P\left(N_2|Pa_{N_2} \right )\cdots P\left(N_m|Pa_{N_m} \right )\]
公式\((16)\)是公式\((12)\)中的分母,公式\((13)\)是公式\((12)\)中的分子。故有:
\[(12)=\frac{P\left(X_i|Pa_{X_i}\right)P\left(X_{n_1}|Pa_{X_{n_1}} \right )\cdots P\left(X_{n_k}|Pa_{X_{n_k}} \right )P\left(N_1|Pa_{N_1} \right )P\left(N_2|Pa_{N_2} \right )\cdots P\left(N_m|Pa_{N_m} \right )}{P\left(X_{n_1}|Pa_{X_{n_1}} \right )\cdots P\left(X_{n_k}|Pa_{X_{n_k}} \right )P\left(N_1|Pa_{N_1} \right )P\left(N_2|Pa_{N_2} \right )\cdots P\left(N_m|Pa_{N_m} \right )}\\=P\left(X_i|Pa_{X_i}\right) \]
得证。

1.4 图中的独立性

在1.3节中,我们解决了命题\(A\)与命题\(B\)的等价,但是前提是在贝叶斯网络这个大框架中。换言之,由贝叶斯网的语义定义,我们讨论的独立性假设集合是:\(\mathcal{I_\mathcal{l}}\left(\mathcal{G}\right)\),即对每一个变量\(X_i\):\(\left(X_i \perp NonDescendants_{X_i}|Pa_{X_i}^\mathcal{G}\right)\)。也就是说,1.3节为我们解决了这样的一个问题:虽然只是知道分布\(P\)根据\(G\)因子分解,但是仍然可以得出\(P\)满足\(\mathcal{I_\mathcal{l}}\left(\mathcal{G}\right)\)的结论。

接下来的问题是:在\(\mathcal{G}​\)中是否存在其他形式的独立性,使得这些独立性对于根据\(\mathcal{G}​\)分子因解的分布\(P​\)仍然成立?

这就是本节要解决的问题。

1.4.1 d-分离

本节要讨论的是在什么情况下,\(X\)在给定\(Z\)时可能影响\(Y\).如果我们能够穷举所有情况,那么我们就可以进一步得出什么时候可以保证独立性条件\(\left(X \perp Y|Z\right)\)在于贝叶斯网络\(\mathcal{G}\)相关的分布中成立。

当影响经过\(Z\)可以从\(X\)流向\(Y\)时,迹\(X\rightleftharpoons Z\rightleftharpoons Y\)成为有效的。对有效迹分析结果总结:

因果迹$X\rightarrow Z \rightarrow Y \(:有效当且仅当没有观测到\)Z$。

证据迹\(X\leftarrow Z \leftarrow Y\):有效当且仅当没有观测到\(Z\)

共同的原因\(X\leftarrow Z \rightarrow Y\):有效当且仅当没有观测到\(Z\)

共同的作用(V-结构)\(X \rightarrow Z \leftarrow Y\):有效当且仅当观测到\(Z\)\(Z\)的后代。

定义5(有效迹)

\(\mathcal{G}\)是一个贝叶斯网络,且\(X_1\rightleftharpoons \cdots \rightleftharpoons X_n\)\(\mathcal{G}\)中的一条迹。令\(Z\)是观测变量的一个子集。在给定\(Z\)的情况下,加入:

若有一个V结构\(X_{i-1}\rightarrow X_i\leftarrow X_{i+1}\),则\(X_i\)或其一个后代在\(Z\)

迹上的其他节点都不在\(Z\)

那么迹\(X_1\rightleftharpoons \cdots \rightleftharpoons X_n\)有效迹

定义6(d-分离)

\(X,Y,Z\)是图\(\mathcal{G}\)的三个节点集。在给定\(Z\)的情况下,假如任意节点\(X_i \in X\)\(Y_I \in Y\)之间不存在有效迹,那么\(X\)\(Y\)在给定\(Z\)时是d-分离的,记作\(d-sep_\mathcal{G}\left(X;Y|Z\right)\)

与d-分离相对应的独立性集合用\(\mathcal{I}\left(\mathcal{G}\right)\)表示:\(\mathcal{I}\left(\mathcal{G}\right)=\{ \left(X \perp Y|Z\right):d-sep_\mathcal{G}\left(X;Y|Z\right)\}\)

接下来我们直接给出一些有用的结论,对这些结论的直观理解,可以参考后面的示意图:

在示意图中,矩形代表图\(\mathcal{G}\)的独立性集合。椭圆代表的是根据\(\mathcal{G}\)因子分解的分布。黑色圆形代表蕴含在各个组份中的独立性。

结论1(可靠性)

如果分布\(P\)根据\(\mathcal{G}\)因子分解,那么\(\mathcal{I}\left(\mathcal{G}\right) \subseteq \mathcal{I}\left(P\right)\).

从图上来理解,可以看到\(P^1,P^2,P^3\)都是图\(\mathcal{G}\)的因子分解,它们都包含了图\(\mathcal{G}\)的d分离独立性集合。

注意到\(\mathcal{I}\left(\mathcal{G}\right)=\{ \left(X \perp Y|Z\right):d-sep_\mathcal{G}\left(X;Y|Z\right)\}\),而\(\mathcal{I}\left(P\right)=\{ \left(X \perp Y|Z\right)\}\)

因此,结论1表明:如果给定某个\(Z\)时,找到的两个节点\(X\)\(Y\)是d-分离的,那么可以保证,在给定\(Z\)时,它们实际上是条件独立的。(如示意图中所表达的含义:)

结论2(完备性)

\(\mathcal{G}\)是一个贝叶斯网络。如果给定\(Z\)时,\(X\)\(Y\)\(\mathcal{G}\)中不是d-分离的(例如示意图中的“其他独立性1”),那么给定\(Z\)时,\(X\)\(Y\)在某些可以在\(\mathcal{G}\)上因子分解的分布中(例如示意图中“其他独立性1”相对于\(P^2\))相互依赖。

这个命题的逆否命题为:在所有可以在\(\mathcal{G}\)上因子分解的分布\(P\)中,如果\((X\perp Y |Z)\),那么有\(d-sep_\mathcal{G}(X;Y|Z)\).对应于示意图上的解释为:对\(P^1,P^2,P^3\)均成立的独立性(事实上就是三个椭圆相交的黑色圆),必然是图\(\mathcal{G}\)中的d分离的子集。

事实上,结论1描述的是可靠性,结论2描述的是完备性。综合结论1和结论2,我们可以得到结论3:

结论3(弱等价)

对于几乎所有在\(\mathcal{G}\)上因子分解的分布\(P\),我们有\(\mathcal{I}(P)=\mathcal{I}(\mathcal{G})\).

结论3在示意图上的解释为:忽略掉了其他独立性1,2,3,4.

这里写图片描述
(在示意图中,矩形代表图的独立性集合。椭圆代表的是根据因子分解的分布。黑色圆形代表蕴含在各个组份中的独立性。)

转载于:https://www.cnblogs.com/xiangguosun/p/6785386.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值