数据预处理:标准化和归一化

本文详细解析了数据预处理中的标准化和归一化,包括它们的公式、实际意义及应用场景。标准化是将数据减去平均值再除以方差,确保数据集中在0附近且方差为1;归一化则是将数据缩放到0到1之间。通过sklearn库展示了这两种方法的实现。标准化和归一化主要应用于那些对数值大小敏感的模型,如神经网络,而决策树等模型则不需要。
摘要由CSDN通过智能技术生成

网上很多关于标准化和归一化的文章,不少是误人子弟的存在。这篇文字希望给大家讲清讲透这两个概念。

一、标准化(standardization)

公式一般为:(X-mean)/std,其中mean是平均值,std是方差。

从公式我们可以看出,标准化操作(standardization)是将数据按其属性(按列)减去平均值,然后再除以方差。这个过程从几何上理解就是,先将坐标轴零轴平移到均值这条线上,然后再进行一个缩放,涉及到的就是平移和缩放两个动作。这样处理以后的结果就是,对于每个属性(每列)来说,所有数据都聚集在0附近,方差为1。计算时对每个属性/每列分别进行。

下面我们通过实操加深印象,并真正理解标准化的实际意义。使用sklearn中的preprocessing中的scale()函数,可以直接将给定数据进行标准化。

首先我们导入需要的库,和需要处理的数据。我们随便导入一支股票,000002万科a。(数据源来自tushare pro版,感谢挖地兔)。

接着,我们选取该股票最后的100个交易日的数据,选取价格和成交量两个特征作为演示。很显然,这两个特征量纲不一样,数值相差很大,需要对他们进行一个数据预处理。先看一下原始数据:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值