数据标准化、归一化

1.中心化(标准化)

公式:

X ′ = X − μ σ X'=\frac{X-\mu}{\sigma} X=σXμ

2.归一化[0,1]

公式:

X ′ = X − X m i n X m a x − X m i n X' = \frac{X-X_{min}}{X_{max}-X_{min}} X=XmaxXminXXmin

3.最大值绝对值标准化

公式:

X ′ = X ∣ X m a x ∣ X'=\frac{X}{|X_{max}|} X=XmaxX
注:该方法用于稀疏数据。

4.RobustScaler

公式:

X ′ = X − X m e d i a n I Q R X'=\frac{X-X_{median}}{IQR} X=IQRXXmedian
其中, I Q R IQR IQR为四分位数间距:是上四分位数Qu和下四分卫数Ql之差,之间包含了全部观察值的一半。
I Q R = Q 3 − Q 1 IQR = Q_3 − Q_1 IQR=Q3Q1
注:该方法用于去除异常点(离群点)

Percentile = np.percentile(df['length'],[0,25,50,75,100])
IQR = Percentile[3] - Percentile[1]
UpLimit = Percentile[3]+ageIQR*1.5
DownLimit = Percentile[1]-ageIQR*1.5

Python代码:

import numpy as np
from sklearn import preprocessing
import matplotlib.pyplot as plt
data = np.loadtxt('data6.txt', delimiter='\t') # 读取数据
# Z-Score标准化
zscore_scaler = preprocessing.StandardScaler() # 建立StandardScaler对象
data_scale_1 = zscore_scaler.fit_transform(data) # StandardScaler标准化处理
# Max-Min标准化
minmax_scaler = preprocessing.MinMaxScaler() # 建立MinMaxScaler模型对象
data_scale_2 = minmax_scaler.fit_transform(data) # MinMaxScaler标准化处理
# MaxAbsScaler标准化
maxabsscaler_scaler = preprocessing.MaxAbsScaler() # 建立MaxAbsScaler对象
data_scale_3 = maxabsscaler_scaler.fit_transform(data) # MaxAbsScaler标准化
处理
# RobustScaler标准化
robustscalerr_scaler = preprocessing.RobustScaler() # 建立RobustScaler标准化
对象
data_scale_4 = robustscalerr_scaler.fit_transform(data) # RobustScaler标准
化标准化处理
# 展示多网格结果
data_list = [data, data_scale_1, data_scale_2, data_scale_3, data_scale_4] # 创
建数据集列表
scalar_list = [15, 10, 15, 10, 15, 10] # 创建点尺寸列表
color_list = ['black', 'green', 'blue', 'yellow', 'red'] # 创建颜色列表
merker_list = ['o', ',', '+', 's', 'p'] # 创建样式列表
title_list = ['source data', 'zscore_scaler', 'minmax_scaler', 'maxabsscaler_scaler', 'ro
建标题列表
for i, data_single in enumerate(data_list): # 循环得到索引和每个数值
plt.subplot(2, 3, i + 1) # 确定子网格
plt.scatter(data_single[:, :-1], data_single[:, -1], s=scalar_list[i], marker= merker_
网格展示散点图
plt.title(title_list[i]) # 设置自网格标题
plt.suptitle("raw data and standardized data") # 设置总标题
plt.show() # 展示图形
### 深度学习中数据标准化归一化的概念 在深度学习领域,为了提高模型性能并加速收敛过程,通常会对输入特征进行预处理。其中两种常见的方式是标准化(Standardization)和归一化(Normalization)[^1]。 #### 标准化(Standardization) 标准化是指通过减去平均值再除以标准差的方法使原始数据转换成均值为0、方差为1的标准正态分布形式的过程。这种方法适用于当特征具有高斯分布特性时的情况[^4]: ```python import numpy as np def standardize(data): mean = np.mean(data, axis=0) std_deviation = np.std(data, axis=0) standardized_data = (data - mean) / std_deviation return standardized_data ``` #### 归一化(Normalization) 而归一化则是指将数值映射到特定区间内的一种线性变换方式,最常用的是把所有样本缩放到\[0, 1\]之间或其它指定范围内[-1, 1][^3]。对于某些机器学习算法而言,尤其是那些依赖于距离测量的技术来说非常重要,因为这可以消除不同尺度带来的偏差问题。 ```python from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler(feature_range=(-1, 1)) normalized_data = scaler.fit_transform(data) ``` ### 不同方法的应用场景 - **最大最小归一化(Min-Max Scaling)**:适合用于图像像素强度等已知上下限的数据集;不改变原数据分布形态。 - **Z-Score标准化**:如果假设数据近似服从正态分布,则推荐采用此法;能够有效应对异常点的影响。 - **小数定标归一化(Decimal Scaling)**:特别适用未知边界情况下的连续型变量调整;简单易实现但可能损失部分精度信息[^5]。 - **批量归一化(Batch Normalization), 层归一化(Layer Normalization),实例归一化(Instance Normalization),组归一化(Group Normalization)**:这些是在神经网络内部应用于激活函数前的操作,有助于缓解梯度消失/爆炸现象,并允许使用更高的学习率加快训练速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值