一、进制的定义
(1)进制概述
◆ 有限种数字符号来表示无限的数值
◆ 进位制是一种记数方式,亦称进位计数法或位值计数法
◆ 使用的数字符号的数目称为这种进位制的基数或底数
◆ 使用大进制位可以解决这个问题
◆ 计算机喜欢二进制,但是二进制表达太长了
◆ 八进制、十六进制满足2的n次方的要求
1024=0b1000000000
1024=0o2000
1024=0x400
二、二进制运算的基础
(1)整数
1.二进制转换十进制:按权展开法
𝑁 = 01100101 = 1 ∗ 26 + 1 ∗ 25 + 1 ∗ 22 + 1 = 101
𝑁 = 11101101 = 1 ∗ 27 + 1 ∗ 26 + 1 ∗ 25 + 1 ∗ 23 + 1 ∗ 22 + 1 = 237
2.十进制转换二进制:重复相除法
𝑁 = 01100101 = 1 ∗ 26 + 1 ∗ 25 + 1 ∗ 22 + 1 = 101
(2)浮点数
1.二进制转换十进制:按权展开法
𝑁 = 0.11001 = 1 ∗ 2−1 + 1 ∗ 2−2 + 1 ∗ 2−5 = 0.78125=25/ 32
𝑁 = 0.01011 = 1 ∗ 2−2 + 1 ∗ 2−4 + 1 ∗ 2−5 = 0.34375 =11/ 32
2.十进制转换二进制:重复相乘法
𝑁 = 0.11001 = 1 ∗ 2−1 + 1 ∗ 2−2 + 1 ∗ 2−5 = 0.78125=25 /32