bzoj3538[Usaco2014 Open]Dueling GPS*

bzoj3538[Usaco2014 Open]Dueling GPS

题意:
给你一个N个点的有向图,设定初始位置为1,结束位置为n。有两个GPS定位系统,分别认为经过边i的时间为Pi,和Qi.每走一条边的时候,如果一个系统认为走的这条边不是它认为的最短路,就会受到警告一次。如果走的这条边都不在两个系统认为的最短路范围内,就会受到2次警告。求最少需要受到多少次警告。n≤10000,边数≤50000
题解:
分别按两个GPS的边权求最短路,然后枚举每条边,把该边的边权变为其警告数,然后再求一次最短路。判断该边是不是最短路的条件是是否dis[es[i].f]+es[i].w==dis[es[i].t]。
代码:
 1 #include <cstdio>
 2 #include <cstring>
 3 #include <algorithm>
 4 #include <queue>
 5 #define inc(i,j,k) for(int i=j;i<=k;i++)
 6 #define maxn 10010
 7 #define INF 0x3fffffff
 8 using namespace std;
 9 
10 inline int read(){
11     char ch=getchar(); int f=1,x=0;
12     while(ch<'0'||ch>'9'){if(ch=='-')f=-1; ch=getchar();}
13     while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
14     return f*x;
15 }
16 struct e{int f,t,w,n;}es[maxn*5]; int g[maxn],ess;
17 void pe(int f,int t,int w){es[++ess]=(e){f,t,w,g[f]}; g[f]=ess;}
18 int n,m,a[2][maxn*5],b[maxn*5],d[2][maxn]; queue<int>q; bool inq[maxn];
19 void spfa(int s,int o){
20     while(!q.empty())q.pop(); memset(inq,0,sizeof(inq)); inc(i,1,n)d[o][i]=INF;
21     q.push(s); inq[s]=1; d[o][s]=0;
22     while(!q.empty()){
23         int x=q.front(); q.pop(); inq[x]=0;
24         for(int i=g[x];i;i=es[i].n)if(d[o][x]+es[i].w<d[o][es[i].t]){
25             d[o][es[i].t]=d[o][x]+es[i].w; if(!inq[es[i].t])q.push(es[i].t),inq[es[i].t]=1;
26         }
27     }
28 }
29 int main(){
30     n=read(); m=read(); inc(i,1,m){int x=read(),y=read(),z=read(); pe(y,x,z); a[0][i]=z; a[1][i]=read();}
31     spfa(n,0); inc(i,1,m)es[i].w=a[1][i]; spfa(n,1);
32     inc(i,1,m){inc(j,0,1)if(d[j][es[i].f]+a[j][i]>d[j][es[i].t])b[i]++; es[i].w=b[i];}
33     spfa(n,0); printf("%d",d[0][1]); return 0;
34 }

 

20160909

转载于:https://www.cnblogs.com/YuanZiming/p/5876454.html

题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值