Codeforces 920F 线段树

题意:

查询:区间查询【l,r】数列的和

修改:区间修改【l,r】ai->d(ai)

d(x)是x的因子个数 比如d(6)=4 (1,2,3,6四个)

思路:

查询:维护区间数列和sum,满足区间合并

修改:尝试暴力修改到叶子+剪枝

发现x多次d(x)是会收敛的d(2)=2,d(1)=1

所以当区间内的值都是<=2的话我们就不用向下继续更新了

那怎么知道区间的值都<=2呢。。

维护区间最大值即可


d(x)预处理一下,对每个因子i更新d(j) j=ki,k>=1


思维难度:0.6,实现难度0.7

跟BZOJ3038类似:那题修改是ai->向下取整sqrt(ai)


#include<iostream>
#include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#define ll long long
int d[1000005]; 

struct stree{
	ll sum;
	ll mx;
}sts[300002*4];
ll a[1000005];
void pushup(int root)
{
	sts[root].sum=sts[root<<1].sum+sts[root<<1|1].sum;
	sts[root].mx=max(sts[root<<1].mx,sts[root<<1|1].mx);
}
void init()
{
	for(int i=1;i<=1000000;i++)
		for(int j=i;j<=1000000;j+=i)
			d[j]++;
}
void build(int l,int r,int root)
{
	if(l==r)
	{
		sts[root].sum=sts[root].mx=a[l];
	}
	else
	{
		int mid=(l+r)>>1;
		build(l,mid,root<<1);
		build(mid+1,r,root<<1|1);
		pushup(root);
	}
}

void update(int nowl,int nowr,int ul,int ur,int root)
{
	if(nowl==nowr)
	{
		sts[root].mx=sts[root].sum=d[sts[root].sum];
		return ;
	}
	if(ul<=nowl&&ur>=nowr&&sts[root].mx<=2)return ;
	int mid=(nowl+nowr)>>1;
	if(ul<=mid)update(nowl,mid,ul,ur,root<<1);
	if(ur>mid)update(mid+1,nowr,ul,ur,root<<1|1);
	pushup(root);
}

ll query(int nowl,int nowr,int ql,int qr,int root)
{
	if(ql<=nowl&&qr>=nowr)
	{
		return sts[root].sum;
	}
	else
	{
		int mid=(nowl+nowr)>>1;
		ll ans=0;
		if(ql<=mid)ans+=query(nowl,mid,ql,qr,root<<1);
		if(qr>mid)ans+=query(mid+1,nowr,ql,qr,root<<1|1);
		return ans;
	}
}
void op();
int main()
{
	init();
//	for(int i=1;i<=10;i++)
//		printf("%d %d\n",i,d[i]);
	int n,m;int t,l,r;
	scanf("%d %d",&n,&m);
	for(int i=1;i<=n;i++)
	scanf("%I64d",&a[i]);
	build(1,n,1);
//	op();
	for(int i=1;i<=m;i++)
	{
		scanf("%d %d %d",&t,&l,&r);
		if(t==1)
		{
			update(1,n,l,r,1);
		//	op();
		}
		else
		{
			printf("%I64d\n",query(1,n,l,r,1));
		}
	}
}

void sp(int t)
{
	for(int i=1;i<=t;i++)
	printf(" ");
}
void op()
{
	int pow2[10]={1,2,4,8,16,32};int n=16;
	printf("\n///\n");
	for(int i=1; i<=31; i++)
	{
		if(i==pow2[0])sp(15);
		if(i==pow2[1])sp(7);
		if(i==pow2[2])sp(3);
		if(i==pow2[3])sp(1);
		if(i>pow2[1]&&i<pow2[2])sp(15);
		if(i>pow2[2]&&i<pow2[3])sp(7);
		if(i>pow2[3]&&i<pow2[4])sp(3);
		if(i>pow2[4]&&i<pow2[5])sp(1);
		printf("%d",sts[i].mx);
		if((i==pow2[1]-1)||(i==pow2[2]-1)||(i==pow2[3]-1)||(i==pow2[4]-1))
			printf("\n");
	}
	printf("\n\n///\n");
}

引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值