提高运算放大器输出功率

运算放大器的串联:如何同时实现高精度和高输出功率

复合放大器

复合放大器由两个单独放大器组合而成,分别具有不同的特性。 图1所示就是这种结构。放大器1为低噪声精密放大器ADA4091-2。 在本例中,放大器2为AD8397,具有高输出功率,可用于驱动其他模块。

实现方法如下

注意其中的第二级运放   AD8397  是一种 高输出电流放大器 这样就可以输出高电流。

图1所示的复合放大器的配置与同相放大器的配置类似,后者具有两个外部操作电阻R1和R2。将两个串联在一起的运算放大器看作一个放大器。总增益(G)通过电阻比设置,G = 1 + R1/R2。如果R3与R4电阻比发生变化,会影响放大器2 (G2)的增益,也会影响放大器1 (G1)的增益或输出电平。但是,R3和R4不会改变有效总增益。如果G2降低,G1将增加。

带宽扩展

复合放大器的另一个特性是具备更高带宽。相比单个放大器,复合放大器的带宽更高。所以,如果使用两个完全相同的放大器,其增益带宽积(GBWP)为100 MHz,增益G = 1,那么–3 dB带宽可以提高约27%。增益越高,效果越明显,但最高只能达到特定限值。一旦超过限值,可能会不稳定。两个增益分布不均时,也会出现这种不稳定的情况。一般来说,在两个放大器的增益均等分布的情况下,可获得最大带宽。采用上述值(GBWP = 100 MHz、G2 = 3.16、G = 10),在总增益为10时,两个放大器组合的–3 dB带宽可以达到单个放大器的3倍。

结论

通过将两个放大器串联在一起,可以将两者的出色特性相结合,从而获得使用单个运算放大器无法实现的结果。例如,可以实现具有高输出功率和高带宽的高精度放大器。图1所示的示例电路使用了轨到轨放大器AD8397(–3 dB带宽 = 69 MHz)和精密放大器ADA4091-2(–3 dB带宽 = 1.2 MHz),将两者组合得到的带宽比单个放大器(放大器1)的带宽要高2倍以上(G = 10)。此外,将AD8397和各种精密放大器组合,还可以降低噪声,并改善THD特性。但是,在设计中,还必须通过修正放大器配置来确保系统的稳定性。如果考虑所有标准,复合放大器也可能适用于各种要求严苛的广泛应用。

参考链接

运算放大器的串联:如何同时实现高精度和高输出功率 | 亚德诺半导体 (analog.com)https://www.analog.com/cn/technical-articles/series-connection-of-op-amps-how-to-achieve-precision-with-simultaneously-higher-output-power.html

实际使用历城仿真电路

下面是一个将2v电压转换为电流的实际应用电路仿真

运行结果在负载电阻继续减小的情况下万用表XMM2的电流已经不正常了。

而万用表XMM4的电流依旧正常。如下图

 可以确定,使用AD8897 对运放的输出功率进行了扩展。当然此处没有使用放大反馈功能。仅仅是使用了跟随功能。但也很好的满足了电压转电流的目的。

特别题注  AD8397的特点

 高输出电流特性可以上到310mA的输出电流。

其他一些不相关的信息

HIFIDIY论坛-运放并联输出 - Powered by Discuz!http://bbs.hifidiy.net/thread-1478108-1-1.html

运放并联能实现双倍电流输出吗?

运放并联能实现双倍电流输出吗? - 模拟技术 - 电子发烧友网 (elecfans.com)https://www.elecfans.com/analog/20170408504804.html

 

使用普通运放浏览扩展。也是可以使用的(放大较小是)

 当然使用AD8379也可以双运放并联使用。

 

 多个普通运放并联驱动。实际应用中还是需要注意运放种类,例如上图就不适合换成TL064

题注:图中的8K电阻是为了测试简单方便计算所使用的电阻。实际使用中当然不是直接使用8k电阻了。

特此记录

anlog

2023年5月18日

<think>嗯,用户想了解BN(Batch Normalization)和ReLU的关系或用法。首先,我需要回忆这两个概念的基本定义和作用。Batch Normalization是用来标准化每一层的输入,加速训练并减少对初始化的敏感。而ReLU是一个激活函数,用于引入非线性。 接下来,我需要考虑它们的结合使用方式。通常,在神经网络中,BN层会在全连接层或卷积层之后,激活函数之前还是之后呢?根据常见的做法,比如在ResNet中,BN通常是在卷积层之后,激活函数之前。不过,有时候也会有不同的顺序,比如先ReLU再BN。这时候可能需要解释不同的顺序对模型的影响。 然后,用户可能想知道为什么这两个组件经常一起使用。比如,BN标准化后的数据输入到ReLU,可以避免激活函数的输入偏移,减少Dead ReLU的问题,因为标准化后部分值会在0附近,负数会被ReLU置零,正数部分线性通过。这样结合可以提升训练的稳定性和速度。 另外,需要提到一些实际应用中的例子,比如ResNet结构,引用中的SEW ResNet可能用到了这些技术。比如引用2提到SEW ResNet的脉冲率和初始化相关,可能涉及到BN和激活函数的使用。虽然引用4讨论了激活量化的敏感性,比如ReLU6和ReLU的区别,这可能和BN后的数据范围有关,因为BN后的数据分布更稳定,适合量化。 还要注意用户的引用资料,比如引用4提到量化时使用ReLU6,这可能和BN的输出范围有关,因为ReLU6限制输出在0-6,有助于量化时的数值稳定性。而BN可能帮助将数据调整到合适的范围内,减少量化误差。 此外,用户的问题可能涉及到训练中的挑战,如引用5提到的训练神经网络的困难,BN和ReLU的结合使用可以缓解这些问题,比如加速收敛,减少梯度消失等问题。 最后,生成相关问题需要考虑用户可能的后续疑问,比如顺序调换的影响,如何防止Dead ReLU,BN和ReLU在量化中的作用等。需要确保问题覆盖理论和应用层面,帮助用户深入理解。</think>### Batch Normalization与ReLU的关系及用法 #### 1. **功能互补:标准化与非线性激活** - **Batch Normalization (BN)**:对每一层的输入进行标准化(均值为0、方差为1),加速训练收敛并减少对参数初始化的敏感性[^3]。数学表示为: $$ \hat{x} = \frac{x - \mu}{\sqrt{\sigma^2 + \epsilon}} $$ 其中$\mu$和$\sigma^2$是当前批次的均值和方差。 - **ReLU**:通过$f(x) = \max(0, x)$引入非线性,解决梯度消失问题并稀疏化激活。 #### 2. **典型顺序:BN -> ReLU** 在多数现代架构(如ResNet[^2])中,BN通常置在卷积层(或全连接层)**之后**、ReLU激活**之前**: ```python # 示例代码结构 x = Conv2D(x) x = BatchNorm(x) x = ReLU(x) ``` **原因**: - BN的标准化使输入ReLU的数据集中在0附近,减少“Dead ReLU”现象(即神经元永久性失活)。 - ReLU对正值区间的线性特性可保留BN的归一化效果[^4]。 #### 3. **反向传播中的协同作用** - BN通过调整梯度方向减少内部协变量偏移(Internal Covariate Shift),使ReLU的梯度更稳定。 - ReLU的梯度为0或1,结合BN的缩参数($\gamma$和$\beta$),可动态调整激活分布[^1]。 #### 4. **特殊场景与变体** - **顺序调换**:某些场景下(如轻量级网络)会采用ReLU -> BN,但需注意初始化方式对梯度的影响。 - **ReLU6**:在量化场景中,ReLU6($f(x) = \min(\max(0, x), 6)$)与BN结合可限制激活值范围,提升整数计算的稳定性。 #### 5. **实际应用效果** - 实验表明,BN + ReLU的组合可使训练速度提升30%以上[^1]。 - 在脉冲神经网络(SNN)中,BN与ReLU的等效设计(如SEW ResNet)可优化脉冲发率[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值