题目描述
给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。
若这两个字符串没有公共子序列,则返回 0。
示例 1:
输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace”,它的长度为 3。
示例 2:
输入:text1 = “abc”, text2 = “abc”
输出:3
解释:最长公共子序列是 “abc”,它的长度为 3。
示例 3:
输入:text1 = “abc”, text2 = “def”
输出:0
解释:两个字符串没有公共子序列,返回 0。
提示:
1 <= text1.length <= 1000
1 <= text2.length <= 1000
输入的字符串只含有小写英文字符。
解题思路
1. DP基础方法
动态规划题目,维护二维数组dp[text1.length][text2.length],第一维表示字符串text1,第二维表示字符串text2。dp[i][j]表示text1中下标0…i的子串与text2中下标0…j的子串的最长公共子序列。
对于dp[i][j],首先分别初始化第0行和第0列。dp[i][0]表示text1中下标0…i的子串与text2中下标为0的元素的最长公共子序列,由于text2[0]只有一个字符,因此dp[i][0]最大为1。而如果dp[i][0]=1,则text1在下标i之后的元素也应为1,即dp[i+1][0]=…=dp[text1.length-1][0]=1,因为之后的子串都包括下标i的元素。
第0行同理。
对于非0行0列的dp[i][j],有2种情况:
(1)当text[1]!=text2[j]时,只考虑两种子问题:dp[i-1][j]和dp[i][j-1],取最大值
(2) 当text1[I]==text2[j]时,等于dp[i-1][j-1]+1
取这三值中的最大值。
代码
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
if(text1==null || text2==null || text1.length()<=0 || text2.length()<=0)
return 0;
int len1 = text1.length();
int len2 = text2.length();
char[] t1 = text1.toCharArray();
char