图之DFS与BFS的复杂度分析

本文详细分析了BFS(广度优先搜索)和DFS(深度优先搜索)在图遍历中的时间复杂度,讨论了邻接表和邻接矩阵两种存储方式下的复杂度差异。同时,介绍了算法复杂度的概念,特别是时间复杂度的大O表示法,以及如何通过大O表示法推导算法复杂度。此外,还比较了不同复杂度级别在不同规模问题上的表现,强调了高效算法的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. BFS的复杂度分析

v v v为图的顶点数, E E E为边数。

BFS是一种借用队列来存储的过程,分层查找,优先考虑距离出发点近的点。无论是在邻接表还是邻接矩阵中存储,都需要借助一个辅助队列, v v v个顶点均需入队,最坏的情况下,空间复杂度为 O ( v ) O(v) Ov

邻接表形式存储时,每个顶点均需搜索一次,时间复杂度 T 1 = O ( v ) T1=O(v) T1=Ov,从一个顶点开始搜索时,开始搜索,访问未被访问过的节点。最坏的情况下,每个顶点至少访问一次,每条边至少访问1次,这是因为在搜索的过程中,若某结点向下搜索时,其子结点都访问过了,这时候就会回退,故时间复 杂度为 O ( E ) O(E) O(E),算法总的时间复 度为 O ( ∣ V ∣ + ∣ E ∣ ) O(|V|+|E|) O(V+E)

邻接矩阵存储方式时,查找每个顶点的邻接点所需时间为 O ( V ) O(V) O(V),即该节点所在的该行该列。又有 v v v个顶点,故算总的时间复杂度为 O ( ∣ V ∣ 2 ) O(|V|^2) O(V2)

2. DFS复杂度分析

DFS算法是一一个递归算法,需要借助一个递归工作栈,故它的空间复杂度为 O ( V ) O(V) O(V

遍历图的过程实质上是对每个顶点查找其邻接点的过程,其耗费的时间取决于所采用结构。

邻接表表示时,查找所有顶点的邻接点所需时间为 O ( E ) O(E) O(E),访问顶点的邻接点所花时间为 O ( V ) O(V) OV,此时,总的时间复杂度为 O ( ∣ V ∣ + ∣ E ∣ ) O(|V|+|E|) O(V+E)

邻接矩阵表示时,查找每个顶点的邻接点所需时间为 O ( V ) O(V) O(V),要查找整个矩阵,故总的时间度为 O ( ∣ V ∣ 2 ) O(|V|^2) O(V2)

算法(一)时间复杂度

1.算法的效率

虽然计算机能快速的完成运算处理,但实际上,它也需要根据输入数据的大小和算法效率来消耗一定的处理器资源。要想编写出能高效运行的程序,我们就需要考虑到算法的效率。
算法的效率主要由以下两个复杂度来评估:
时间复杂度:评估执行程序所需的时间。可以估算出程序对处理器的使用程度。
空间复杂度:评估执行程序所需的存储空间。可以估算出程序对计算机内存的使用程度。

设计算法时,一般是要先考虑系统环境,然后权衡时间复杂度和空间复杂度,选取一个平衡点。不过,时间复杂度要比空间复杂度更容易产生问题,因此算法研究的主要也是时间复杂度,不特别说明的情况下,复杂度就是指时间复杂度。

2.时间复杂度
时间频度

一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为 T ( n ) T(n) T(n)

时间复杂度

前面提到的时间频度T(n)中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律,为此我们引入时间复杂度的概念。一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用 T ( n ) T(n) T(n)表示,若有某个辅助函数 f ( n ) f(n) f(n),使得当n趋近于无穷大时, T ( n ) / f ( n ) T(n)/f(n) Tn)/f(n)的极限值为不等于零的常数,则称 f ( n ) f(n) f(n) T ( n ) T(n) T(n)的同数量级函数,记作 T ( n ) = O ( f ( n ) ) T(n)=O(f(n)) T(n)=O(f(n)),它称为算法的渐进时间复杂度,简称时间复杂度。

3.大O表示法

像前面用 O ( ) O( ) O()来体现算法时间复杂度的记法,我们称之为大O表示法。
算法复杂度可以从最理想情况、平均情况和最坏情况三个角度来评估,由于平均情况大多和最坏情况持平,而且评估最坏情况也可以避免后顾之忧,因此一般情况下,我们设计算法时都要直接估算最坏情况的复杂度。
大O表示法 O ( f ( n ) O(f(n) O(f(n)中的f(n)的值可以为 1 、 n 、 l o g n 、 n ² 1、n、logn、n² 1nlognn²等,因此我们可以将 O ( 1 ) 、 O ( n ) 、 O ( l o g n ) 、 O ( n ² ) O(1)、O(n)、O(logn)、O(n²) O(1)O(n)O(logn)O(n²)分别可以称为常数阶、线性阶、对数阶和平方阶,那么如何推导出f(n)的值呢?我们接着来看推导大O阶的方法。

推导大O阶

推导大O阶,我们可以按照如下的规则来进行推导,得到的结果就是大O表示法:
1.用常数1来取代运行时间中所有加法常数。
2.修改后的运行次数函数中,只保留最高阶项
3.如果最高阶项存在且不是1,则去除与这个项相乘的常数。

1. 常数阶

先举了例子,如下所示。

int sum = 0,n = 100; //执行一次
sum = (1+n)*n/2; //执行一次
System.out.println (sum); //执行一次

上面算法的运行的次数的函数为f(n)=3,根据推导大O阶的规则1,我们需要将常数3改为1,则这个算法的时间复杂度为O(1)。如果sum = (1+n)*n/2这条语句再执行10遍,因为这与问题大小n的值并没有关系,所以这个算法的时间复杂度仍旧是 O ( 1 ) O(1) O(1),我们可以称之为常数阶。

2. 线性阶

线性阶主要要分析循环结构的运行情况,如下所示。

for(int i=0;i<n;i++){
//时间复杂度为O(1)的算法

}

上面算法循环体中的代码执行了n次,因此时间复杂度为 O ( n ) O(n) O(n)

3. 对数阶

接着看如下代码:

int number=1;
while(number<n){
number=number*2;
//时间复杂度为O(1)的算法

}

可以看出上面的代码,随着number每次乘以2后,都会越来越接近n,当number不小于n时就会退出循环。假设循环的次数为X,则由2^x=n得出x=log₂n,因此得出这个算法的时间复杂度为 O ( l o g n ) O(logn) O(logn)

4. 平方阶

下面的代码是循环嵌套:

for(int i=0;i<n;i++){
for(int j=0;j<n;i++){
//复杂度为O(1)的算法

}
}

内层循环的时间复杂度在讲到线性阶时就已经得知是O(n),现在经过外层循环n次,那么这段算法的时间复杂度则为 O ( n ² ) O(n²) O(n²)
接下来我们来算一下下面算法的时间复杂度:

for(int i=0;i<n;i++){
for(int j=i;j<n;i++){
//复杂度为O(1)的算法

}
}

需要注意的是内循环中int j=i,而不是int j=0。当i=0时,内循环执行了n次;i=1时内循环执行了n-1次,当i=n-1时执行了1次,我们可以推算出总的执行次数为:

n+(n-1)+(n-2)+(n-3)+……+1
=(n+1)+[(n-1)+2]+[(n-2)+3]+[(n-3)+4]+……
=(n+1)+(n+1)+(n+1)+(n+1)+……
=(n+1)n/2
=n(n+1)/2
=n²/2+n/2

根据此前讲过的推导大O阶的规则的第二条:只保留最高阶,因此保留 n ² / 2 n²/2 n²/2。根据第三条去掉和这个项的常数,则去掉 1 / 2 1/2 1/2,最终这段代码的时间复杂度为 O ( n ² ) O(n²) O(n²)

5. 其他常见复杂度

除了常数阶、线性阶、平方阶、对数阶,还有如下时间复杂度:

  • f ( n ) = n l o g n f(n)=nlogn f(n)=nlogn时,时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn),可以称为 n l o g n nlogn nlogn阶。
  • f ( n ) = n ³ f(n)=n³ f(n)=n³时,时间复杂度为 O ( n ³ ) O(n³) O(n³),可以称为立方阶。
  • f ( n ) = 2 ⁿ f(n)=2ⁿ f(n)=2时,时间复杂度为 O ( 2 ⁿ ) O(2ⁿ) O(2),可以称为指数阶。
  • f ( n ) = n ! f(n)=n! f(n)=n!时,时间复杂度为 O ( n ! ) O(n!) O(n!),可以称为阶乘阶。
  • f ( n ) = ( √ n f(n)=(√n f(n)=(n时,时间复杂度为 O ( √ n ) O(√n) O(n),可以称为平方根阶。
4.复杂度的比较

下面将算法中常见的f(n)值根据几种典型的数量级来列成一张表,根据这种表,我们来看看各种算法复杂度的差异。

nlogn√nnlogn2ⁿn!
522102532120
1033301001024
50572502500约10^15约3.010^64
10061060010000约10^30约9.310^157
100093190001000 000约10^300约4.0*10^2567

从上表可以看出, O ( n ) 、 O ( l o g n ) 、 O ( √ n ) 、 O ( n l o g n ) O(n)、O(logn)、O(√n )、O(nlogn ) O(n)O(logn)O(n)O(nlogn)随着n的增加,复杂度提升不大,因此这些复杂度属于效率高的算法,反观 O ( 2 ⁿ ) 和 O ( n ! ) O(2ⁿ)和O(n!) O(2)O(n!)当n增加到50时,复杂度就突破十位数了,这种效率极差的复杂度最好不要出现在程序中,因此在动手编程时要评估所写算法的最坏情况的复杂度。

下面给出一个更加直观的图:
这里写图片描述

其中x轴代表n值,y轴代表T(n)值(时间复杂度)。T(n)值随着n的值的变化而变化,其中可以看出 O ( n ! ) 和 O ( 2 ⁿ ) O(n!)和O(2ⁿ) O(n!)O(2)随着n值的增大,它们的T(n)值上升幅度非常大,而 O ( l o g n ) 、 O ( n ) 、 O ( n l o g n ) O(logn)、O(n)、O(nlogn) O(logn)O(n)O(nlogn)随着n值的增大,T(n)值上升幅度则很小。
常用的时间复杂度按照耗费的时间从小到大依次是:

O ( 1 ) < O ( l o g n ) < O ( n ) < O ( n l o g n ) < O ( n ² ) < O ( n ³ ) < O ( 2 ⁿ ) < O ( n ! ) O(1)<O(logn)<O(n)<O(nlogn)<O(n²)<O(n³)<O(2ⁿ)<O(n!) O(1)<O(logn)<O(n)<O(nlogn)<O(n²)<O(n³)<O(2)<O(n!)

https://blog.csdn.net/Charles_ke/article/details/82497543
https://zhuanlan.zhihu.com/p/37727433

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值