Windows下编译 yolo-fastest 或 darknet 提示CUDA not found 的解决方案

最近在做yolo了识别,选了同样基于darknet的yolo-fastest。

git:https://github.com/dog-qiuqiu/Yolo-Fastest

开发环境:Window10 + VS 2019

clone完以后按照教程编译了一个NO GPU的版本,测试demo运行正常,

教程传送门:window版本YOLO-Fastest从Darknet源码编译、测试_荪荪的博客-CSDN博客

然后准备使用GPU做测试,下载了CUDA10.1,安装,配置CMake,执行Configure,提示CUDA not found,如下图

明明已经安装了CUDA ,为何还是提示未找到,然后翻了一下yolo-fastest的CMakeLists内容,找到这句log的位置,如下图:

这个提示就很明确了,就是在执行了check_language(CUDA)后依然没有找到CMAKE_CUDA_COMPILER这个环境变量,打开系统的环境变量列表,确实没有CUDA相关项,这也比较奇怪,明明已经正常安装CUDA。

Google转了一圈,发现原来CUDA需要安装完全版,而我选择的的是精简版。

卸载CUDA,重新安装完全版,然后Configure

(PS:理论上如果一开是就完全安装CUDA的话,就不会有这个问题了,😂😂😂)

(PPS:因为我们需要将darknet编译成vs工程,因此在安装CUDA时,一定要勾选安装Visual Studio Integration)

关于CUDA安装和卸载的教程,这里就不再赘述,如有疑问的地方,参见此贴:

Win10中CUDA、cuDNN的安装与卸载_cuda 卸载-CSDN博客

CMake依然过不去,还是提示CUDA not found,打开CMake的入口环境变量列表发现还是没有CUDA的相关项,但是系统环境变量已经有了。

是不是因为在重新安装CUDA的时候,没有关闭CMake窗口导致没有重新加载环境变量。

尝试关闭CMake窗口重新打开,为了保证万全,把之前CMake输出目录里的生成文件全部清空,然后检查环境变量,发现已经正常读取到了CUDA_PATH,如下图所示:

 再次执行Configure,顺利通过。

直接Generate生成。终于完成了。😄😄😄😄

PS:遇到这个坑的主要原因还是CUDA没有正确安装,如果在确认CUDA正常安装后,还是提示CUDA not found的话,可以尝试手动添加CUDA的两个环境变量,或者在CMake的的Environment Editor里添加环境变量,应该也能解决问题。

作为AI助手,我需要提醒您,YOLO-Fastest V2是一个深度学习模型,需要GPU进行训练和推理。如果您没有GPU,那么您需要使用云计算服务来部署模型。 以下是在Windows 10上部署YOLO-Fastest V2的步骤: 1. 安装Anaconda 在Windows 10上安装Anaconda,可以使用Anaconda Navigator来管理Python环境和包。 2. 安装CUDA和cuDNN YOLO-Fastest V2需要CUDA和cuDNN来加速深度学习训练和推理。您可以从NVIDIA官网下载适合您的版本。 3. 克隆YOLO-Fastest V2的代码库 在命令行中使用以下命令克隆YOLO-Fastest V2的代码库: ``` git clone https://github.com/dog-qiuqiu/Yolo-Fastest.git ``` 4. 安装依赖库 进入代码库目录,使用以下命令安装依赖库: ``` pip install -r requirements.txt ``` 5. 下载预训练权重文件 在YOLO-Fastest V2的GitHub页面中,您可以找到预训练权重文件的下载链接。将下载的权重文件保存到代码库目录中。 6. 修改配置文件 在代码库目录中,将`yolo_fastest.py`文件中的`model_path`和`anchors_path`变量修改为您下载的预训练权重文件和锚点文件的路径。 7. 运行YOLO-Fastest V2 在命令行中使用以下命令运行YOLO-Fastest V2: ``` python yolo_fastest.py ``` 8. 测试YOLO-Fastest V2 在运行YOLO-Fastest V2后,您可以使用摄像头或视频来测试模型的效果。按下“q”键退出测试。 以上就是在Windows 10上部署YOLO-Fastest V2的步骤。如果您遇到任何问题,请参考YOLO-Fastest V2的GitHub页面或咨询相关专业人员。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值