看上去是个图论题,其实可以从里面抽象出一个数学模型的。如果有m个连通分支,一共n个点,每个连通分支点的个数分别是a1,a2,,,,an那么a1*(n-a1)+a2*(n-a1-a2)+a3*(n-a1-a2-a3)+........=k。通过这种方法写的dfs不需要很多的剪枝。代码如下:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#define MAXN 110
using namespace std;
int a[MAXN],k;
int dfs(int n,int sum,int num)
{
if(sum==k&&n==0) return num;
if(n==0) return 0;
if(sum>k) return 0;
for(int i=1; i<=n; i++)
{
if(i==2) continue;
a[num]=i;
int y=dfs(n-i,sum+i*(n-i),num+1);
if(y) return y;
}
return 0;
}
int main()
{
int n;
cin>>n>>k;
int u=dfs(n,0,1);
if(!u)
{
cout<<-1<<endl;
return 0;
}
int L=1,R=0;
for(int i=1; i<u; i++)
{
if(i>1)
{
L=R+1;
cout<<R<<" "<<L<<endl;
}
R+=a[i];
for(int j=L; j<R; j++)
cout<<j<<" "<<j+1<<endl;
if(L!=R) cout<<L<<" "<<R<<endl;
}
return 0;
}
第二种:参考http://www.cnblogs.com/Chierush/p/3232723.html
利用了所有点的个数为n,并且n*n-2*k=a1^2+a2^2+…… 下面的这个dfs()很容易超时。。。。。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#define MAXN 110
using namespace std;
int a[MAXN],k,nn;
int dfs(int pre,int num,int sum1,int sum2)
{
if(sum1==nn&&sum2==nn*nn-2*k) return num;
if((nn-sum1)*(nn-sum1)<nn*nn-2*k-sum2) return 0;//这个条件很强的,不加就会TLE。它的原理是(a+b)^2=a^2+b^2+2ab;
for(int i=pre; i<=nn; i++)
{
if(i==2) continue;
a[num]=i;
if(sum1+i>nn||sum2+i*i>nn*nn-2*k) break;
int y=dfs(i,num+1,sum1+i,sum2+i*i);
if(y) return y;
}
return 0;
}
int main()
{
cin>>nn>>k;
int u=dfs(1,1,0,0);
if(!u)
{
cout<<-1<<endl;
return 0;
}
int L=1,R=0;
for(int i=1; i<u; i++)
{
if(i>1)
{
L=R+1;
cout<<R<<" "<<L<<endl;
}
R+=a[i];
for(int j=L; j<R; j++)
cout<<j<<" "<<j+1<<endl;
if(L!=R) cout<<L<<" "<<R<<endl;
}
return 0;
}
做题时思路要灵活,特别是这个题中用到数学上的不等式进行优化