前瞻技术|从物理性质逆推分子结构

总所周知,采用机器学习方法,基于定量结构-性质关系(QSPR),可以从分子和晶体结构预测物理性质。现在,「J-OCTA软件1可以进行逆分析,利用京都大学长町实验室开发的mol-infer数据接口,可以实现物理性质逆推分子结构。这是一种非常新颖的分子结构生成方法,具有广阔的应用前景。

第一,利用人工神经网络(Artificial Neural Network, ANN)从分子结构预测物理性质。第二,通过混合整数线性规划(Mixed Integer Linear Programming, MILP)求解人工神经网络的逆运算,能够在相反的方向上执行快速而准确的运算,这是单独使用人工神经网络所不可能实现的。

首先,基于1297组数据集训练分子结构和物理性质之间的关系。图1展示的是测试过程中使用的分配系数。


图1. mol-infer的训练数据集和目标性质(分配系数=10.0)

其次,使用MILP执行逆运算。设目标分配系数为10.0,生成种子分子的图结构和对应官能团的树结构(见图2),用来预测分子结构。

图2. 种子分子的图结构(左)      对应官能团的树结构(右)

通过「J-OCTA软件1预测的分子结构如图3所示,得到了4种同分异构体。对于预测的分子结构,再次采用正向方法计算其物理性质,结果表明其分配系数为9.8,证明预测的分子结构基本满足目标物性。


图3.  mol-infer预测的分子结构

1】J-OCTA分子动力学软件 —— 通过对材料从原子级别到微米级别的模拟计算,从本质上理解元素组成和性能之间的关系。软件可以满足几乎所有材料的分析,比如橡胶、塑料、薄膜、涂料及电解质材料等。可将其作为“ 知识发现工具 ”进行灵活运用。

### 解决PyCharm无法加载Conda虚拟环境的方法 #### 配置设置 为了使 PyCharm 能够成功识别并使用 Conda 创建的虚拟环境,需确保 Anaconda 的路径已正确添加至系统的环境变量中[^1]。这一步骤至关重要,因为只有当 Python 解释器及其关联工具被加入 PATH 后,IDE 才能顺利找到它们。 对于 Windows 用户而言,在安装 Anaconda 时,默认情况下会询问是否将它添加到系统路径里;如果当时选择了否,则现在应该手动完成此操作。具体做法是在“高级系统设置”的“环境变量”选项内编辑 `Path` 变量,追加 Anaconda 安装目录下的 Scripts 文件夹位置。 另外,建议每次新建项目前都通过命令行先激活目标 conda env: ```bash conda activate myenvname ``` 接着再启动 IDE 进入工作区,这样有助于减少兼容性方面的问题发生概率。 #### 常见错误及修复方法 ##### 错误一:未发现任何解释器 症状表现为打开 PyCharm 新建工程向导页面找不到由 Conda 构建出来的 interpreter 列表项。此时应前往 Preferences/Settings -> Project:...->Python Interpreter 下方点击齿轮图标选择 Add...按钮来指定自定义的位置。按照提示浏览定位到对应版本 python.exe 的绝对地址即可解决问题。 ##### 错误二:权限不足导致 DLL 加载失败 有时即使指定了正确的解释器路径,仍可能遇到由于缺乏适当的操作系统级许可而引发的功能缺失现象。特别是涉及到调用某些特定类型的动态链接库 (Dynamic Link Library, .dll) 时尤为明显。因此拥有管理员身份执行相关动作显得尤为重要——无论是从终端还是图形界面触发创建新 venv 流程均如此处理能够有效规避此类隐患。 ##### 错误三:网络连接异常引起依赖下载超时 部分开发者反馈过因网速慢或者其他因素造成 pip install 操作中途断开进而影响整个项目的初始化进度条卡住的情况。对此可尝试调整镜像源加速获取速度或是离线模式预先准备好所需资源包后再继续后续步骤。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值