PyTorch实现—Logistic回归,loss和acc可视化

本文详细介绍使用PyTorch框架实现逻辑回归模型的过程,包括数据读取、模型定义、损失函数选择、优化器配置及训练过程。通过8万次迭代训练,模型在分类任务上的表现得到显著提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import matplotlib.pyplot as plt 
import torch
from torch import nn
from torch.autograd import Variable
import numpy as np
import visdom

viz = visdom.Visdom(env='train')
loss_win = viz.line(np.arange(0.8))
acc_win = viz.line(np.arange(0.8))

#从data.txt读取数据
with open('data.txt','r') as f:
    data_list = f.readlines()
    data_list = [i.split('\n')[0] for i in data_list]
    data_list = [i.split(',') for i in data_list]
    data = [(float(i[0]),float(i[1]),float(i[2])) for i in data_list]
    x_data = np.array([(float(i[0]),float(i[1])) for i in data_list])
    y_data = np.array([[(float(i[2]))] for i in data_list])
    
x0 = list(filter(lambda x :x[-1] == 0.0,data))
x1 = list(filter(lambda x :x[-1] == 1.0,data))

plot_x0_0 = [i[0] for i in x0]
plot_x0_1 = [i[1] for i in x0]
plot_x1_0 = [i[0] for i in x1]
plot_x1_1 = [i[1] for i in x1]

#plt.plot(plot_x0_0,plot_x0_1,'ro',label='x_0')
#plt.plot(plot_x1_0,plot_x1_1,'bo',label='x_0')
#plt.show()

#获取训练数据
x = torch.from_numpy(x_data).float()
#y = torch.from_numpy(y_data)
y = torch.FloatTensor(y_data)
#print(x.size())
#print(y)
#定义模型
class logisticRegression(nn.Module):
    def __init__(self):
        super().__init__()
        self.line = nn.Linear(2,1)
        self.smd = nn.Sigmoid()
        
    def forward(self,x):
        x = self.line(x)
        return self.smd(x) 
    
logistic_model = logisticRegression()

criterion = nn.BCELoss()
optimizer = torch.optim.SGD(logistic_model.parameters(),lr = 1e-3)

for epoch in range(80000):
    x = Variable(x)
    
    y = Variable(y)
    #print('****')
    #print(x)
    
    #==========forward=========
    out = logistic_model(x)
    
    loss = criterion(out,y)
    print_loss = loss.item()    
    #判断输出结果大于0.5就等于1,小于0.5就等于0
    #通过这个来计算模型分类的准确率
    mask = out.ge(0.5).float() 
    correct = (mask == y).sum()
    acc = correct.item()/x.size(0)
    #==========backward========
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    
    if(epoch + 1) % 100 == 0:
        print('*'*10)
        print('epoch{}'.format(epoch+1))
        print('loss is {:.4f}'.format(print_loss))
        print('acc is {:.4f}'.format(acc))
        viz.line(Y=np.array([print_loss]), X=np.array([epoch+1]), update='append', opts={'title':'loss'}, win=loss_win)
        viz.line(Y=np.array([acc]), X=np.array([epoch+1]), update='append', opts={'title':'acc'}, win=acc_win)
        
weight = logistic_model.line.weight.data[0]
w0, w1 = weight[0], weight[1]
b = logistic_model.line.bias.data[0]
plt.plot(plot_x0_0,plot_x0_1,'ro',label='x_0')
plt.plot(plot_x1_0,plot_x1_1,'bo',label='x_0')
plt.legend(loc = 'best')
plot_x = torch.from_numpy(np.arange(30, 100, 0.1))
plot_y = (-w0 * plot_x - b) / w1
plt.plot(plot_x, plot_y)
plt.show()

 

 

本次实验分别测试训练60000次和80000的效果,以上loss和acc是训练60000之后的可视化数据图。训练80000次之后可视化效果更明显。

好的,我可以为您提供一些代码示例步骤来完成这个任务。 首先,您需要下载并导入所需的软件包,包括`numpy`、`pandas`、`matplotlib`、`scikit-learn``tensorflow`或`pytorch`。您还需要下载并解压Kaggle上的胸部X光图像数据集。 接下来,您需要加载预处理数据。在这个数据集中,您将有两个子目录,分别是`train``test`。`train`子目录包含训练图像,`test`子目录包含测试图像。每个子目录都有两个子文件夹,分别是`NORMAL``PNEUMONIA`,其中`NORMAL`文件夹包含正常的胸部X光图像,`PNEUMONIA`文件夹包含有肺炎的胸部X光图像。 您可以使用以下代码来加载预处理数据: ```python import os import cv2 import numpy as np from sklearn.model_selection import train_test_split # Load data data = [] labels = [] PNEUMONIA_path = "./chest_xray/train/PNEUMONIA/" NORMAL_path = "./chest_xray/train/NORMAL/" for img in os.listdir(NORMAL_path): img_path = os.path.join(NORMAL_path, img) img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, (224, 224)) data.append(img) labels.append(0) for img in os.listdir(PNEUMONIA_path): img_path = os.path.join(PNEUMONIA_path, img) img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, (224, 224)) data.append(img) labels.append(1) # Convert to numpy array data = np.array(data) / 255.0 labels = np.array(labels) # Split data into train and validation sets train_data, val_data, train_labels, val_labels = train_test_split(data, labels, test_size=0.2, random_state=42) ``` 在上面的代码中,我们首先定义了两个变量`PNEUMONIA_path``NORMAL_path`,分别指向包含有肺炎正常胸部X光图像的子目录。然后,我们遍历每个子目录中的图像,并将其读取为灰度图像,然后调整大小为`224x224`。我们还将标签存储在一个名为`labels`的列表中,其中0表示正常,1表示肺炎。最后,我们将数据标签转换为NumPy数组,并将数据集拆分为训练验证集。 现在,您可以尝试使用不同的分类方法来对数据进行分类预测。下面是三种不同的分类方法示例: ## 1. Logistic Regression ```python from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report # Train model lr = LogisticRegression() lr.fit(train_data.reshape(train_data.shape[0], -1), train_labels) # Evaluate model on validation set val_preds = lr.predict(val_data.reshape(val_data.shape[0], -1)) print(classification_report(val_labels, val_preds)) ``` 上面的代码使用scikit-learn中的逻辑回归模型进行分类。我们首先将训练数据`train_data`转换为二维数组,然后使用`fit`方法来训练模型。接下来,我们使用验证数据`val_data`进行预测,并使用`classification_report`函数生成分类报告。 ## 2. Support Vector Machine (SVM) ```python from sklearn.svm import SVC from sklearn.metrics import classification_report # Train model svm = SVC() svm.fit(train_data.reshape(train_data.shape[0], -1), train_labels) # Evaluate model on validation set val_preds = svm.predict(val_data.reshape(val_data.shape[0], -1)) print(classification_report(val_labels, val_preds)) ``` 上面的代码使用scikit-learn中的支持向量机模型进行分类。我们使用与逻辑回归相同的方法来训练模型并进行预测,然后使用`classification_report`函数生成分类报告。 ## 3. Convolutional Neural Network (CNN) ```python import tensorflow as tf from keras.utils import to_categorical from keras.models import Sequential from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten # Convert labels to one-hot encoding train_labels = to_categorical(train_labels) val_labels = to_categorical(val_labels) # Build CNN model cnn = Sequential() cnn.add(Conv2D(32, (3,3), activation='relu', input_shape=(224, 224, 1))) cnn.add(MaxPooling2D((2,2))) cnn.add(Conv2D(64, (3,3), activation='relu')) cnn.add(MaxPooling2D((2,2))) cnn.add(Conv2D(128, (3,3), activation='relu')) cnn.add(MaxPooling2D((2,2))) cnn.add(Conv2D(256, (3,3), activation='relu')) cnn.add(MaxPooling2D((2,2))) cnn.add(Flatten()) cnn.add(Dense(128, activation='relu')) cnn.add(Dense(2, activation='softmax')) # Compile model cnn.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # Train model cnn.fit(train_data.reshape(train_data.shape[0], 224, 224, 1), train_labels, epochs=10, batch_size=32, validation_data=(val_data.reshape(val_data.shape[0], 224, 224, 1), val_labels)) # Evaluate model on validation set val_loss, val_acc = cnn.evaluate(val_data.reshape(val_data.shape[0], 224, 224, 1), val_labels) print("Validation loss:", val_loss) print("Validation accuracy:", val_acc) ``` 上面的代码使用KerasTensorFlow构建了一个卷积神经网络模型。我们首先将标签转换为独热编码,并定义了一个包含四个卷积层两个全连接层的CNN模型。我们使用`adam`优化器交叉熵损失函数来编译模型,并在训练集上训练模型。最后,我们使用验证数据集评估模型,并输出损失准确率。 在这三种不同的分类方法中,CNN模型的表现最好。您可以尝试调整模型的超参数,例如卷积层的数量大小,全连接层的大小dropout等,以提高模型的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值