8、数论与几何:从抽象代数到函数世界的探索

数论与几何:从抽象代数到函数世界的探索

1. 抽象代数结构

在数学的抽象世界里,不同的数集有着独特的代数结构。我们从常见的数集开始探讨,比如整数集 (Z) 在加法运算下构成群。但对于集合 (W),它不包含像 (-2) 这样的加法逆元,所以不能构成群。而自然数集 (N) 甚至没有加法单位元 (0)。

这里引入了半群和独异点的概念:
- 半群 ((G,★)) 需要满足两个条件:
- 封闭性:若 (a) 和 (b) 属于 (G),则 (a★b) 也属于 (G)。
- 结合律:若 (a)、(b) 和 (c) 属于 (G),则 ((a★b) ★c = a★(b★c)) 也属于 (G)。
- 独异点是在半群的基础上,还存在一个唯一的单位元 (id),使得对于 (G) 中的任意元素 (a),都有 (a★id = id★a = a)。

根据这些定义,自然数集 (N) 是半群,而集合 (W) 是独异点。并且,所有的群都是独异点,所有的独异点都是半群。

2. 模运算

整数有无穷多个,那么是否存在有限的数集,其运算规则与整数类似呢?模运算就为我们提供了这样的例子。以模 (6) 的整数集 ({0, 1, 2, 3, 4, 5}) 为例,对于任意整数 (n),我们可以通过计算它除以 (6) 的余数,将其映射到这个集合中。在模运算中,我们用 “(\equiv)” 表示同余关系,例如 (7 \equiv 1 \pmod{6}),这意味着 (7 - 1) 能被 (6) 整除。

这六个元素在加法运算下构成一个以 (0) 为单位元的群,记为 (Z/6Z)。例如,在这个群中,(2) 是 (4) 的加法逆元。

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化训练,到执行分类及结果优化的完整流程,并介绍了精度评价通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置结果后处理环节,充分利用ENVI Modeler进行自动化建模参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略效果评估体系,涵盖当前企业传播面临的预算、资源、内容效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放GEO优化,提升品牌在AI搜索中的权威性可见性;④通过数据驱动评估体系量化品牌影响力销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析工具指南进行系统学习,重点关注媒体适配性策略GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值