ARIMA

ARIMA

具体案例可参见

[1] ARIMA建模实例

[2] Python时间序列数据分析–以示例说明

[3] 时间序列模式(ARIMA)—Python实现

[4] BOX-JENKINS预测法

1. AR/MA/ARMA/ARIMA

1.1 AR-自回归模型(Auto regression Model)

p p p阶自回归模型 A R ( P ) AR(P) AR(P) y t = c + ∅ 1 y t − 1 + ∅ 2 y t − 2 + ⋯ + ∅ p y t − p + e t y_{t}=c+\emptyset_{1} y_{t-1}+\emptyset_{2} y_{t-2}+\cdots+\emptyset_{p} y_{t-p}+e_{t} yt=c+1yt1+2yt2++pytp+et

其中, y t y_t yt为时间序列第 t t t时刻的观察值,即为因变量; y t − 1 , y t − 2 , ⋯   , y t − p y_{t-1},y_{t-2},\cdots,y_{t-p} yt1,yt2,,ytp为时序

### ARIMA模型概述 ARIMA(AutoRegressive Integrated Moving Average),即自回归积分滑动平均模型,是一种用于时间序列数据分析的强大工具[^1]。该模型通过结合三个主要组成部分来描述时间序列的行为: - **自回归 (AR)** 部分表示当前观测值与过去若干期的观测值之间的线性关系; - **差分 (I, Integration)** 是指为了使原始非平稳的时间序列变得平稳而进行的一系列操作; - **移动平均 (MA)** 描述了当前误差项与其他各时期随机扰动的影响。 #### 参数说明 ARIMA(p,d,q),其中p代表自回归部分的最大滞后长度;d为差分次数;q则是移动平均过程中的最大滞后期数。这三个参数的选择对于构建有效的ARIMA模型至关重要[^3]。 ### 应用实例 在实际应用中,ARIMA已被证明适用于多种类型的预测任务,尤其是在经济金融领域内的销售量预估、股票价格走势判断等方面表现出色[^2]。此外,在互联网行业里也常被用来做网站访问量趋势分析等。 具体到实施层面,当面对一个新的时间序列数据集时,通常会先绘制出这组数据随时间变化的趋势图以便直观感受是否存在明显的周期性和稳定性特点。如果发现原序列为非稳态,则需对其进行适当阶次(d)的一阶或多阶差分化处理直至达到稳定状态为止[^4]。 ```python import pandas as pd from statsmodels.tsa.arima.model import ARIMA # 假设我们有一个名为dataframe的数据框,里面有一列time_series_data存储着我们要建模的时间序列数值 model = ARIMA(dataframe['time_series_data'], order=(5,1,0)) results = model.fit() print(results.summary()) ``` 此段Python代码展示了如何使用`statsmodels`库下的`ARIMA`函数创建并拟合一个简单的ARIMA(5,1,0)模型给定输入时间为索引且含有单变量目标列‘time_series_data’的数据表对象"dataframe".
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值