paddlepaddle

import gym, os

from itertools import count

import paddle

import paddle.nn as nn

import paddle.optimizer as optim

import paddle.nn.functional as F

from paddle.distribution import Categorical

print(paddle.__version__)


 

device = paddle.get_device()

env = gym.make("CartPole-v0")

state_size = env.observation_space.shape[0]

action_size = env.action_space.n

lr = 0.001

class Actor(nn.Layer):

    def __init__(self, state_size, action_size):

        super(Actor, self).__init__()

        self.state_size = state_size

        self.action_size = action_size

        self.linear1 = nn.Linear(self.state_size, 128)

        self.linear2 = nn.Linear(128, 256)

        self.linear3 = nn.Linear(256, self.action_size)

    def forward(self, state):

        output = F.relu(self.linear1(state))

        output = F.relu(self.linear2(output))

        output = self.linear3(output)

        distribution = Categorical(F.softmax(output, axis=-1))

        return distribution

class Critic(nn.Layer):

    def __init__(self, state_size, action_size):

        super(Critic, self).__init__()

        self.state_size = state_size

        self.action_size = action_size

        self.linear1 = nn.Linear(self.state_size, 128)

        self.linear2 = nn.Linear(128, 256)

        self.linear3 = nn.Linear(256, 1)

    def forward(self, state):

        output = F.relu(self.linear1(state))

        output = F.relu(self.linear2(output))

        value = self.linear3(output)

        return value

def compute_returns(next_value, rewards, masks, gamma=0.99):

    R = next_value

    returns = []

    for step in reversed(range(len(rewards))):

        R = rewards[step] + gamma * R * masks[step]

        returns.insert(0, R)

    return returns


 

def trainIters(actor, critic, n_iters):

    optimizerA = optim.Adam(lr, parameters=actor.parameters())

    optimizerC = optim.Adam(lr, parameters=critic.parameters())

    for iter in range(n_iters):

        state = env.reset()

        log_probs = []

        values = []

        rewards = []

        masks = []

        entropy = 0

        env.reset()

        for i in count():

            # env.render()

            state = paddle.to_tensor(state,dtype="float32",place=device)

            dist, value = actor(state), critic(state)

            action = dist.sample([1])

            next_state, reward, done, _ = env.step(action.cpu().squeeze(0).numpy()) 

            log_prob = dist.log_prob(action);

            # entropy += dist.entropy().mean()

            log_probs.append(log_prob)

            values.append(value)

            rewards.append(paddle.to_tensor([reward], dtype="float32", place=device))

            masks.append(paddle.to_tensor([1-done], dtype="float32", place=device))

            state = next_state

            if done:

                if iter % 10 == 0:

                    print('Iteration: {}, Score: {}'.format(iter, i))

                break


 

        next_state = paddle.to_tensor(next_state, dtype="float32", place=device)

        next_value = critic(next_state)

        returns = compute_returns(next_value, rewards, masks)

        log_probs = paddle.concat(log_probs)

        returns = paddle.concat(returns).detach()

        values = paddle.concat(values)

        advantage = returns - values

        actor_loss = -(log_probs * advantage.detach()).mean()

        critic_loss = advantage.pow(2).mean()

        optimizerA.clear_grad()

        optimizerC.clear_grad()

        actor_loss.backward()

        critic_loss.backward()

        optimizerA.step()

        optimizerC.step()

    paddle.save(actor.state_dict(), 'model/actor.pdparams')

    paddle.save(critic.state_dict(), 'model/critic.pdparams')

    env.close()



 

if __name__ == '__main__':

    if os.path.exists('model/actor.pdparams'):

        actor = Actor(state_size, action_size)

        model_state_dict  = paddle.load('model/actor.pdparams')

        actor.set_state_dict(model_state_dict )

        print('Actor Model loaded')

    else:

        actor = Actor(state_size, action_size)

    if os.path.exists('model/critic.pdparams'):

        critic = Critic(state_size, action_size)

        model_state_dict  = paddle.load('model/critic.pdparams')

        critic.set_state_dict(model_state_dict )

        print('Critic Model loaded')

    else:

        critic = Critic(state_size, action_size)

    trainIters(actor, critic, n_iters=201)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值