深度学习(十二)——Winograd(2)

最大公约数和Euclidean algorithm(续)

Euclidean algorithm的步骤如下图所示:

这里写图片描述

1.假设a>b,则令c:=amodb

2.如果c=0,则GCD(a,b)=b

3.否则令a:=b,b:=c,并返回到第1步。

这个算法应该是Euclid记述的前人成果,因为更早的Eudoxus of Cnidus曾提到过这个算法。

Eudoxus of Cnidus,公元前390年~公元前337年,古希腊几何学家、天文学家和地理学家。柏拉图同时代最杰出的数学家。《几何原本》卷Ⅴ和卷Ⅻ主要来自欧多克索斯的工作。

然而,小学课本不使用Euclidean algorithm是有原因的,除了Euclidean algorithm本身相对复杂之外,短除法能同时搞定最大公约数和最小公倍数(Least common multiple),这也是它的教学优势所在。

Euclidean algorithm作为最古老的算法之一,被收录进Knuth的巨著TAOCP。这里的算法,指的是那些根据一定的规则来一步步执行的运算。

Bézout’s identity和Extended Euclidean algorithm

Euclidean division还可以表示为如下形式:

如果a=amod(b),则a=abb+a

这里的x是向下取整的意思。

我们可以把上述定义扩展到负数。例如:

103=2×60+17(103)mod60=17

注意:余数永远0

还可以把GCD的定义扩展为:GCD(a,0)=a,即任何整数都能整除0。

Euclidean division的定义扩展之后,则有Bézout’s identity。

Bézout’s identity:若a,b是非0整数,d=GCD(a,b),则存在整数x,y使得ax+by=d。证明略。

例如:

m0=3,M0=20,(1)20+7(3)=1

Étienne Bézout,1730~1783,法国数学家。法国科学院院士。

至于如何求解x,y,这就要用到Extended Euclidean algorithm了。

首先,我们考虑边界情况,当b=0时,原方程可化为ax=GCD(a,0),则:

(1){x=1y=0

接着,设a=b,b=amodb,则由Euclidean algorithm可得:GCD(a,b)=GCD(b,amodb),因此:

ax+by=GCD(a,b)=GCD(b,amodb)

ax+by=ax+by=bx+(amodb)y=bx+(aabb)y

整理得到:

ax+by=ay+b(xaby)

对比系数,可得:

(2){x=yy=xaby

公式1和2合到一起,就是一种迭代算法,也就是Extended Euclidean algorithm了。

从上面的讨论可知,Extended Euclidean algorithm实际上只在Euclidean algorithm之上前进了很小的一步,它的主要内核还是来源于Euclid。

但Euclid之所以不能更进一步,则主要是受制于负数的概念。虽然现在的小学高年级课本中,已经引入了负数,古代中国、印度、阿拉伯也很早就用到了负数,但是西方差不多要到文艺复兴时期,才逐渐接受了负数的概念。

不过反例也是有的,比如无理数,其它文明貌似根本就没有关注过它和有理数究竟有何区别…

参考:

https://blog.sengxian.com/algorithms/gcd-extgcd

欧几里德算法与扩展欧几里德算法

中国剩余定理

Chinese remainder theorem算是初等数论中,一个非常重要的定理了。(初等数论意指使用不超过高中程度的初等代数处理的数论问题,其最主要的工具包括整数的整除性与同余。)

CRT最早出自中国四世纪成书的古书《孙子算经》。著名的娱乐圈学霸关晓彤同学所攻克的“鸡兔同笼问题”,就出自该书。

CRT的内容为:

mi为两两互质(pairwise coprime)的大于1的整数,ai为任意整数,则存在x满足:

(1)xa1(modm1)(2)(3)xak(modmk)

如果0x<M,M=i=1kmi,则该x是唯一的。

CRT的存在性证明略。

这里以如下简单的例子,来讲讲如何求解x。

(4)x0(mod3)(5)x3(mod4)(6)x4(mod5).

这个问题的穷举法需要遍历0到M的所有整数,这显然是个十分低效的算法。因此无论手算还是计算机算,基本都不用穷举法。

再来介绍一下筛法(Sieving):

1.首先对mi按降序排序。

2.选择最大的模(这里为5)和对应的ai(这里为4)。

3.

{% highlight text %}
4 mod 4 → 0. Continue
4 + 5 = 9 mod 4 →1. Continue
9 + 5 = 14 mod 4 → 2. Continue
14 + 5 = 19 mod 4 → 3. OK, continue by considering remainders modulo 3 and adding 5×4 = 20 each time
19 mod 3 → 1. Continue
19 + 20 = 39 mod 3 → 0. OK, this is the result.
{% endhighlight %}

筛法对于M较小的情况,是非常高效的,因此手算一般都采用该法。但是,筛法的复杂度是指数级的,对于M较大的情况,并不好用。

CRT虽然只是初等数论的基本定理,但应用范围很广,Lagrange interpolation(一阶多项式插值)、Hermite interpolation(多阶多项式插值)和Dedekind’s theorem,都用到了CRT。

多项式的Euclidean division和GCD

我们可以仿照整数Euclidean division定义多项式的Euclidean division,如下面的竖式所示:

x2+1x+3x3)x32x2+0x4¯x33x2+0x4_+x2+0x4+x23x4_+3x4+3x9_+5

上式也可写为横式:

x32x24=(x3)(x2+x+3)q(x)+5r(x)

其中的r(x)即为余数。

同样的可以定义多项式的GCD:

x2+7x+6=(x+1)(x+6)

x25x6=(x+1)(x6)

则两多项式的GCD为(x+1)

多项式的CRT

CRT亦可改为如下等效形式:

c=(i=0kciNiMi)modM

其中mi两两互质,ci=Rmi[c],M=i=0kmi,Mi=M/miNi,ni是方程NiMi+nimi=GCD(Mi,mi)=1的解。

显然这里的Ni,ni可以使用Extended Euclidean algorithm求解。

例如:

m0=3,M0=20,(1)20+7(3)=1

m1=4,M1=15,(1)15+(4)4=1

m2=5,M2=12,(2)12+(5)5=1

稍加扩展,可得到多项式版本的CRT:

(3)c(p)=(i=0kc(i)(p)N(i)(p)M(i)(p))modM(p)

其中m(i)(p)两两互质,c(i)(p)=Rm(i)[c(p)],M(p)=i=0km(i)(p),M(i)(p)=M(p)/m(i)(p)N(i)(p)是方程N(i)(p)M(i)(p)+n(i)(p)m(i)(p)=GCD(M(i)(p),m(i)(p))=1的解。

Winograd algorithm

下面以一个2x3的卷积为例,介绍一下Winograd algorithm的做法。

2x3卷积的多项式形式为:

h(p)=h0+h1p,x(p)=x0+x1p+x2p2,s(p)=h(p)x(p)

这里引入多项式(polynomial)的度(degree)的概念:多项式中包含的最高次项的次数,被称为多项式的度。

例如,上面的h(p)的degree为1,而x(p)的degree为2,而s(p)的degree为3。

和Cook-Toom algorithm一样,Winograd algorithm也是一个构造式的算法。

Step 1:首先要构造一个degree大于等于3的多项式:

m(p)=m(0)(p)m(0)(p)m(k)(p)

其中的m(i)(p)两两互质。

这里为了简单起见,不妨令m(p)=p(p1)(p+1),并使用Extended Euclidean algorithm构建如下计算表格:

i
m(i)(p)
M(i)(p)
n(i)(p)
N(i)(p)
0
p
p21
p
1
1
p1
p2+p
12(p+2)
12
2
p+1
p2p
12(p2)
12

Step 2:使用如下公式计算h(i)(p),x(i)(p)

h(i)(p)=h(p)modm(i)(p)

x(i)(p)=x(p)modm(i)(p)

计算过程如下:

h(0)(p)=h0,x(0)(p)=x0

h(1)(p)=h0+h1,x(1)(p)=x0+x1+x2

h(2)(p)=h0h1,x(2)(p)=x0x1+x2

Step 3:使用如下公式计算s(i)(p)

s(i)(p)=h(i)(p)x(i)(p)modm(i)(p)

计算过程如下:

s(0)(p)=h0x0

s(1)(p)=(h0+h1)(x0+x1+x2)

s(2)(p)=(h0h1)(x0x1+x2)

Step 4:根据公式3计算余数s(p),并利用如下公式计算被除数s(p)

s(p)=s(p)+hN1xL1m(p)

计算过程如下:

(13)s(p)=s(p)+h1x2m(p)(14)=s(0)(p2+1)+s(1)2(p2+p)+s(2)2(p2p)+h1x2m(p3p)(15)=s(0)+p(s(1)2s(2)2h1x2)+p2(s(0)+s(1)2+s(2)2)+p3(h1x2)

这里用4个乘法和7个加法,替代了6个乘法和2个加法。

总的来说,Winograd algorithm是一个很复杂的算法,但是结论却很简单。因此,在具体的IC实现中,一般只针对特定常用尺寸的kernel,应用相应的结论即可。

Winograd这个知识点的复杂,其实主要还不在于算法本身,而是在于其前置了很多数论方面的知识。而我恰恰不具备这些知识,因此进展极度缓慢,前后用了近20天才看完了相关的内容。。。不过,收获很大^_^

Winograd for CNN

CNN中的Winograd算法一般使用如下论文的结论:

《Fast Algorithms for Convolutional Neural Networks》

该文引论部分提到了Winograd算法的结论,该结论和本文上述的算法步骤略有不同,最初是Winograd针对FIR提出的Minimal FIR Filtering算法。但是算法的本质是相同的,仍然是构建多项式和CRT。

https://github.com/andravin/wincnn

这个项目可以很方便的计算不同大小的核的Winograd的结果。这个项目中还有一个pdf文件作为上述论文的补充材料,详细的给出了各矩阵的计算方法。

FFT与卷积

FFT是加速卷积运算的一种常用方法。但由于其原理,当卷积核小的时候,是没什么加速的,当核是3或者5时,速度有时更慢或者相当,而在CNN中卷积的核大多数比较小,FFT起到的加速作用很小,所以基本没人用。

参见:

http://www.cnblogs.com/jianyingzhou/p/4303578.html

convolution,fft, 加速

参考

https://colfaxresearch.com/falcon-library/

FALCON Library: Fast Image Convolution in Neural Networks on Intel Architecture

https://www.intelnervana.com/winograd/

“Not so fast, FFT”: Winograd

https://www.encyclopediaofmath.org/index.php/Winograd_small_convolution_algorithm

Winograd small convolution algorithm

©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值