2021-12-30每日刷题打卡

一、LeetCode:149. 直线上最多的点数

(1)问题描述

给你一个数组 points ,其中 points[i] = [xi, yi] 表示 X-Y 平面上的一个点。求最多有多少个点在同一条直线上。

示例 1:


输入:points = [[1,1],[2,2],[3,3]]
输出:3
示例 2:


输入:points = [[1,1],[3,2],[5,3],[4,1],[2,3],[1,4]]
输出:4
 

提示:

1 <= points.length <= 300
points[i].length == 2
-104 <= xi, yi <= 104
points 中的所有点 互不相同

(2)问题分析

这道题可以直接用暴力的方法做,按照数学知识,斜率相同的两个点在同一直线上,所以可以用三层for循环直接所有点的同一条直线的个数,因为两个点确定一条直线,所以定义一个临时变量,变量值为2.

(3)代码实现

        

class Solution {
    public int maxPoints(int[][] points) {
        if(points.length<3){return points.length;}
        int ans=2;
        for(int i=0;i<points.length;i++){
            for(int j=i+1;j<points.length;j++){
                int count=2;
         for(int k=j+1;k<points.length;k++){if((points[j][0]-points[i][0])*(points[k][1]-points[j][1])==(points[j][1]-points[i][1])*(points[k][0]-points[j][0])){count++;}}
                ans=Math.max(ans,count);
            }
        }
        return ans;
    }
}

二、LeetCode:202. 快乐数

(1)题目描述

        

编写一个算法来判断一个数 n 是不是快乐数。

「快乐数」定义为:

对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和。
然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。
如果 可以变为  1,那么这个数就是快乐数。
如果 n 是快乐数就返回 true ;不是,则返回 false 。

示例 1:

输入:n = 19
输出:true
解释:
12 + 92 = 82
82 + 22 = 68
62 + 82 = 100
12 + 02 + 02 = 1
示例 2:

输入:n = 2
输出:false
 

(2)题目分析

        这个快乐数数组因为是一个无限循环的最后变成1,所以可以用快慢指针的方式。当快指针不等于一的时候,快指针走两步,慢指针走一步,如果快慢指针等于同一个数的时候则这个数不是快乐数,否则如果快指针最后等于一,则这个数是快乐数

(3)代码实现

        

class Solution {
    public boolean isHappy(int n){
       int slow=n,fast=getNext(n);
       while(slow!=fast&&fast!=1){
           slow=getNext(slow);
           fast=getNext(getNext(fast));
       }
       return fast==1;
    }
    public int getNext(int n){
        int total=0;
        while(n>0){
         int d=n%10;
            n/=10;
            total+=d*d;
        }
        return total;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值