一,树的实现和操作
要实现树的操作,我们需要把树转换成二叉树,再对二叉树实现操作后,再转回树,那怎么把树转换成二叉树呢,前面我们讲过了树的存储,有一种方法叫孩子兄弟法(二叉链法)
上面的树用孩子兄弟法(二叉链表)表示出来是这样:
这个图看上去和二叉树一模一样,我们用二叉树的模型表示出来就是:
对比两个图,我们总结出来,树转换成二叉树的规律:
就是树的兄弟结点,都变成二叉树的右孩子.然后,树的兄弟结点和别的结点的联系都断了,根据这个规律,可以总结出转换的方法:
1,加线:在兄弟之间加一连线
2,抹线:对每个结点,除了其左孩子外,去除其与其余孩子之间的联系
3,旋转:以树的根结点为轴心,将整树顺时针转45度
树变二叉树:兄弟相连留长子
相反,将二叉树转换成树的方法就是:
1,加线:若p结点是双亲结点的左孩子,则将p的右孩子,右孩子的右孩子....沿分支找到的所有右孩子,都与p的双亲用线连起来
2,抹线:抹掉原二叉树中双亲与右孩子之间的连线
3,调整:将结点按层次排列,形成树结构
二叉树变树:左孩右右连双亲,去掉原来右孩线
了解了树和二叉树之间的转换后,我们对树的操作都可以转换为对二叉树的操作,那么就简单了.
二,森林与二叉树的转化
森林转化为二叉树
1,将各棵树分别转换成二叉树
2,将每棵树的根结点用线相连
3,以第一棵树根结点为二叉树的根,再以根结点为轴心,顺时针旋转,构成二叉树型结构
森林变二叉树:树变二叉根相连
二叉树转化为森林
1,抹线:将二叉树中根结点与其右孩子连线,及沿右分支搜索到所有右孩子间连线全部抹掉,使之变成孤立的二叉树.
2,还原:将孤立的二叉树还原成树
二叉树变森林:去掉全部右孩线,孤立二叉再还原
三,树和森林的遍历
1,树的遍历
先根(次序)遍历:若树不空,则先访问根结点,然后依次先根遍历各棵子树.
后根(次序)遍历:若树不空,则先依次后根遍历各棵子树,然后访问根结点.
按层次遍历:若树不空,则自上而下自左至右访问树中每个结点.
先根遍历:A->B->C->D->E
后根遍历:B->D->C->E->A
层次遍历:A->B->C->E->D
2,森林的遍历
将森林看作由三部分构成:
1森林中第一棵树的根结点
2森林中第一棵树的子树森林
3森林中其它树构成的森林
先序遍历:若森林不空,则:
1访问森林中第一棵树的根结点
2先序遍历森林中第一棵树的子树森林
3先序遍历森林中(除第一棵树之外)其余树构成的森林
即:依次从左至右对森林中的每一棵树进行先根遍历
中序遍历:若森林不空,则:
1中序遍历森林中第一棵树的子树森林
2访问森林中第一棵树的根结点
3中序遍历森林中(除第一棵树之外)其余树构成的森林
即:依次从左到右对森林中每一棵树进行后根遍历
先序遍历:A->B->C->E->D->F->G->H->I->J
中序遍历:B->C->E->A->D->H->I->J->G->A