numpy学习

numpy学习

In [8]:
import numpy as np
array = np.array([[1,2,3], [2,3,5]]) print(array) 
 
[[1 2 3]
 [2 3 5]]
In [9]:
array.ndim
Out[9]:
2
In [10]:
array.shape
Out[10]:
(2, 3)
In [11]:
array.size
Out[11]:
6
In [17]:
a=np.array([1,2,3],dtype=np.int) print(a) print(a.dtype) b=np.array([1,2,3],dtype=np.float) print(b) print(b.dtype) 
 
[1 2 3]
int32
[ 1.  2.  3.]
float64
In [19]:
array0 = np.zeros((3,4)) print(array0) 
 
[[ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]]
In [21]:
array1 = np.ones((3,4)) print(array1) 
 
[[ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]]
In [23]:
array2 = np.empty((3,4)) print(array2) 
 
[[ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]]
In [24]:
array3 = np.arange(10,20,2) print(array3) 
 
[10 12 14 16 18]
In [26]:
array4 = np.arange(12).reshape((3,4)) print(array4) 
 
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]
In [27]:
array5 = np.linspace(1,10,25) print(array5) 
 
[  1.      1.375   1.75    2.125   2.5     2.875   3.25    3.625   4.
   4.375   4.75    5.125   5.5     5.875   6.25    6.625   7.      7.375
   7.75    8.125   8.5     8.875   9.25    9.625  10.   ]
In [30]:
array6 = np.linspace(1,10,12).reshape((3,4)) print(array6) 
 
[[  1.           1.81818182   2.63636364   3.45454545]
 [  4.27272727   5.09090909   5.90909091   6.72727273]
 [  7.54545455   8.36363636   9.18181818  10.        ]]
In [38]:
a=np.array([10,20,30,40]) b=np.arange(4) c=a-b print(c) 
 
[10 19 28 37]
In [34]:
c=b**3
print(c) 
 
[ 0  1  8 27]
In [35]:
c=10*np.sin(a) print(c) 
 
[-5.44021111  9.12945251 -9.88031624  7.4511316 ]
In [36]:
print(b)
print(b<3) print(b==3) 
 
[0 1 2 3]
[ True  True  True False]
[False False False  True]
In [44]:
a=np.array([[1,2,3],[3,4,5]]) b=np.arange(6).reshape((3,2)) print(a) print(b) #c=a*b c_dot=np.dot(a,b) print(c_dot) c_dot2=a.dot(b) print(c_dot2) 
 
[[1 2 3]
 [3 4 5]]
[[0 1]
 [2 3]
 [4 5]]
[[16 22]
 [28 40]]
[[16 22]
 [28 40]]
In [50]:
a=np.random.random((2,4)) print(a) print(np.sum(a)) print(np.max(a)) print(np.min(a)) 
 
[[ 0.4601967   0.93594758  0.5499286   0.41483107]
 [ 0.5729537   0.04874679  0.26190708  0.5702891 ]]
3.81480060629
0.935947580711
0.0487467894088
In [52]:
a=np.random.random((2,4)) print(a) print(np.sum(a,axis=1)) #axis=1为行 print(np.max(a,axis=0)) #axis=0为列 print(np.min(a,axis=1)) #行 
 
[[ 0.47054195  0.44146948  0.71298909  0.8230615 ]
 [ 0.155426    0.06085024  0.36118835  0.45072419]]
[ 2.44806202  1.02818877]
[ 0.47054195  0.44146948  0.71298909  0.8230615 ]
[ 0.44146948  0.06085024]
In [67]:
A=np.arange(2,14).reshape((3,4)) print(A) print(np.argmin(A)) print(np.argmax(A)) 
 
[[ 2  3  4  5]
 [ 6  7  8  9]
 [10 11 12 13]]
0
11
In [63]:
print(np.mean(A)) print(A.mean()) #平均值 print(np.average(A)) #平均值 print(np.median(A)) #中位数 
 
7.5
7.5
7.5
7.5
In [68]:
print(np.cumsum(A)) #累加 
 
[ 2  5  9 14 20 27 35 44 54 65 77 90]
In [69]:
print(np.diff(A)) #累差 
 
[[1 1 1]
 [1 1 1]
 [1 1 1]]
In [72]:
print(np.nonzero(A)) # 
 
(array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], dtype=int64), array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3], dtype=int64))
In [74]:
A=np.arange(14,2,-1).reshape((3,4)) print(A) print(np.sort(A)) #按行排序 
 
[[14 13 12 11]
 [10  9  8  7]
 [ 6  5  4  3]]
[[11 12 13 14]
 [ 7  8  9 10]
 [ 3  4  5  6]]
In [78]:
print(A)
print(A.T) #行列数交换。矩阵反向 也可以表示成transpose(A) print(A.T.dot(A)) #求矩阵相乘 
 
[[14 13 12 11]
 [10  9  8  7]
 [ 6  5  4  3]]
[[14 10  6]
 [13  9  5]
 [12  8  4]
 [11  7  3]]
[[332 302 272 242]
 [302 275 248 221]
 [272 248 224 200]
 [242 221 200 179]]
In [79]:
print(A)
print(np.clip(A,5,9)) #小于5大于9的都替换成5或9,其他数保留不变。 
 
[[14 13 12 11]
 [10  9  8  7]
 [ 6  5  4  3]]
[[9 9 9 9]
 [9 9 8 7]
 [6 5 5 5]]
In [81]:
print(A)
print(np.mean(A,axis=1)) #行平均值 print(np.mean(A,axis=0)) #列平均值 
 
[[14 13 12 11]
 [10  9  8  7]
 [ 6  5  4  3]]
[ 12.5   8.5   4.5]
[ 10.   9.   8.   7.]
In [86]:
A=np.arange(3,15).reshape((3,4)) print(A) print(A[2]) #同 A[2,:] 第3行的所有数 print(A[2][1]) #同A[2,1] print(A[:,1]) #第一列的所有数 print(A[1,1:3]) 
 
[[ 3  4  5  6]
 [ 7  8  9 10]
 [11 12 13 14]]
[11 12 13 14]
12
[ 4  8 12]
[8 9]
In [87]:
A=np.arange(3,15).reshape((3,4)) print(A) for row in A: print(row) 
 
[[ 3  4  5  6]
 [ 7  8  9 10]
 [11 12 13 14]]
[3 4 5 6]
[ 7  8  9 10]
[11 12 13 14]
In [89]:
A=np.arange(3,15).reshape((3,4)) print(A) for column in A.T: print(column) 
 
[[ 3  4  5  6]
 [ 7  8  9 10]
 [11 12 13 14]]
[ 3  7 11]
[ 4  8 12]
[ 5  9 13]
[ 6 10 14]
In [91]:
A=np.arange(3,15).reshape((3,4)) print(A) print(A.flatten()) for i in A.flat: print(i) 
 
[[ 3  4  5  6]
 [ 7  8  9 10]
 [11 12 13 14]]
[ 3  4  5  6  7  8  9 10 11 12 13 14]
3
4
5
6
7
8
9
10
11
12
13
14
In [96]:
A=np.array([1,2,3]) B=np.array([4,5,6]) c=np.vstack((A,B)) #上下合并 print(A.shape) print(c) print(c.shape) 
 
(3,)
[[1 2 3]
 [4 5 6]]
(2, 3)
In [97]:
d=np.hstack((A,B)) #左右合并 print(d) print(d.shape) 
 
[1 2 3 4 5 6]
(6,)
In [99]:
print(A)
print(A.T) 
 
[1 2 3]
[1 2 3]
In [105]:
print(A)
print(A[:,np.newaxis],A[:,np.newaxis].shape) 
 
[1 2 3]
[[1]
 [2]
 [3]] (3, 1)
In [104]:
print(A,A.shape) print(A[np.newaxis:],A[np.newaxis:].shape) 
 
[1 2 3] (3,)
[1 2 3] (3,)
In [107]:
A=np.array([1,2,3])[:,np.newaxis] #以列作为维度 B=np.array([4,5,6])[:,np.newaxis] c=np.vstack((A,B)) #上下合并 d=np.hstack((A,B)) #左右合并 print(A) print(B) print(c) print(d) 
 
[[1]
 [2]
 [3]]
[[4]
 [5]
 [6]]
[[1]
 [2]
 [3]
 [4]
 [5]
 [6]]
[[1 4]
 [2 5]
 [3 6]]
In [112]:
A=np.array([1,2,3])[:,np.newaxis] #以列作为维度 B=np.array([4,5,6])[:,np.newaxis] e=np.concatenate((A,B,B,A),axis=0) #按列合并。等同vstack((A,B)) 上下合并 print(e) f=np.concatenate((A,B,B,A),axis=1) #按行合并。等同hstack((A,B)) 左右合并 print(f) 
 
[[1]
 [2]
 [3]
 [4]
 [5]
 [6]
 [4]
 [5]
 [6]
 [1]
 [2]
 [3]]
[[1 4 4 1]
 [2 5 5 2]
 [3 6 6 3]]
In [120]:
A=np.arange(12).reshape((3,4)) print(A) b=np.split(A,2,axis=1) #axis=1 按列来分割 print(b) c=np.split(A,3,axis=0) #axis=0 按行来分割 print(c) 
 
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]
[array([[0, 1],
       [4, 5],
       [8, 9]]), array([[ 2,  3],
       [ 6,  7],
       [10, 11]])]
[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8,  9, 10, 11]])]
In [122]:
print(A)
d=np.array_split(A,3,axis=1) #不等分割 print(d) 
 
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]
[array([[0, 1],
       [4, 5],
       [8, 9]]), array([[ 2],
       [ 6],
       [10]]), array([[ 3],
       [ 7],
       [11]])]
In [124]:
print(A)
b=np.vsplit(A,3) #上下分割 按行分割 同 split(A,3,axis=0) print(b) 
 
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]
[array([[0, 1, 2, 3]]), array([[4, 5, 6, 7]]), array([[ 8,  9, 10, 11]])]
In [125]:
print(A)
b=np.hsplit(A,2) #左右分割 按列分割 同 split(A,2,axis=1) print(b) 
 
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]
[array([[0, 1],
       [4, 5],
       [8, 9]]), array([[ 2,  3],
       [ 6,  7],
       [10, 11]])]
In [130]:
a=np.array([1,2,3,4]) b=a c=a d=b print(a,b,c,d) print(b is a) a[0]=11 print(a,b,c,d) b[1:3]=[22,33] print(a,b,c,d) 
 
[1 2 3 4] [1 2 3 4] [1 2 3 4] [1 2 3 4]
True
[11  2  3  4] [11  2  3  4] [11  2  3  4] [11  2  3  4]
[11 22 33  4] [11 22 33  4] [11 22 33  4] [11 22 33  4]
In [137]:
a=np.array([1,2,3,4]) e=a.copy() #deep copy print(e,a) print(e is a) a[0]=55 print(e,a) 
 
[1 2 3 4] [1 2 3 4]
False
[1 2 3 4] [55  2  3  4]

转载于:https://www.cnblogs.com/afangxin/p/6994439.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值