HashMap
HashMap的默认属性
//table默认初始化容量
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
//table最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
//加载因子,HashMap在其容量自动增加前可达到多满的尺度
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//table的树化阈值,即链表转成红黑树的阈值,在存储数据时,当链表长度大于该值时,将链表转换成红黑树
static final int TREEIFY_THRESHOLD = 8;
//table的链表还原阈值,当红黑树转为链表的阈值,当在扩容时,此时HashMap的数据存储位置
//会重新计算,在重新计算位置后,当原有的红黑树内数量<6时,则将红黑树转化为链表
static final int UNTREEIFY_THRESHOLD = 6;
//最小树形化容量阈值,当table的容量大于该值是,才允许树形化链表,将链表转换为红黑树
//否则,若桶内元素太多时,直接扩容,不进行树形化
//为了避免扩容,树形化选择的冲突,这个值不能小于4 * TREEIFY_THRESHOLD。
static final int MIN_TREEIFY_CAPACITY = 64;
HashMap的构造函数
HashMap共有四个构造函数
//传入参数为初始容量和加载因子。
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
//传入初始容量(使用默认的加载因子0.75)
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
//均使用默认参数
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
//使用传入的HashMap的参数
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
//计算大于m.size()/factory的最小的二次幂
putMapEntries(m, false);
}
put方法
put方法首先计算传入的key,在调用putval方法,计算hash时对哈希码进行二次处理。
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {
//tab用于记录当前的存储table
Node<K,V>[] tab;
//p记录当前hash所指向的table中的节点的信息。
Node<K,V> p;
//n记录table的长度,i记录当前hash所指向的下标。
int n, i;
//判断table是否为null,长度是否为0,如果这两个有一个满足,则说明当前table没有初始化,于是重新初始化
if ((tab = table) == null || (n = tab.length) == 0)
//若需要初始话,记录初化后n的长度
n = (tab = resize()).length;
//查看当前table中hash指向的值是否为空
if ((p = tab[i = (n - 1) & hash]) == null)
//如果为空,则直接将传入的值插入
tab[i] = newNode(hash, key, value, null);
//如果不为空,则再次分情况
else {
//进入这个条件说明tab[i]不为空
Node<K,V> e; K k;
//该条件判断出是否输入的key与当前存储的key相同,则直接将e赋值为p
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//如果当前table[i]中保存的节点与p不相同,
//那么说明table[i]中保存的是链表或者红黑树
//如果p是红黑树的一个节点
else if (p instanceof TreeNode)
//将传入的节点存放进树结构中,
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//如果不是红黑树节点,则说明p是链表
else {
//进入该条件说明p中存放的是链表
//遍历该链表
for (int binCount = 0; ; ++binCount) {
//如果链表的下一个节点为kong,则说明链表中没有与传入节点相同的节点
if ((e = p.next) == null) {
//将新节点插入链表的尾部
p.next = newNode(hash, key, value, null);
//插入节点之后判断是否需要树形化链表
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//如果在链表中找到了与新插入节点相同的key值的节点,
//就直接在e中存放该节点。
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//到这一步之后,e中存放的就是即将插入value值的节点。
//如果e为null则不插入,如果e不为bull,则按照条件进行插入。
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
//如果执行插入节点后该HashMap中存放的节点数量大于threshold,那么就进行resize操作
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
HashMap table的扩容
在插入数据周,如果发现HashMap中存放的节点数量大于threshold,就会执行扩容操作,threshold为加载因子乘上当前容量。只有数组的容量大于设置的MIN_TREEIFY_CAPACITY时,才会将数组中存储链表转化为红黑树结构。
final Node<K,V>[] resize() {
//记录当前ildTab记录未扩容前的table
Node<K,V>[] oldTab = table;
//如果table没有初始化,oldCap赋值为0,
//如果table已经初始化了,table赋值当前table的长度
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//threshold为一个阈值,当HashMap中的容量大于这个阈值时,
//执行resize()操作,在table未初始化时值为0
//oldThr为记录resize之前的threshold
int oldThr = threshold;
int newCap, newThr = 0;
//如果是初始化阶段,不进入这个if,非初始化阶段进入这个if
if (oldCap > 0) {
//如果当前table容量比设定的最大的容量还要大,
//就只将threshold设定为Integer.MAX_VALUE
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//否则,将新容量设定为当前容量的两倍,而且当前容量大于等于默认的容量,
//就将新的阈值也设定为旧阈值的两倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
//如果是初始化阶段
else { // zero initial threshold signifies using defaults
//将新容量设置为默认的容量,新的阈值设定为默认容量乘0.75
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//默认情况下不会进入这个if
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//将当前的阈值设置为最新计算出的阈值
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
//创建新容量大小的数组
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
//将table设定为newTab
table = newTab;
//给新table赋值,如果是初始化,则跳过
if (oldTab != null) {
//遍历旧数组
for (int j = 0; j < oldCap; ++j) {
//e记录旧数组的数组中存放的链表头或数根节点
Node<K,V> e;
//如果数组中存放的节点不是null
if ((e = oldTab[j]) != null) {
//将就数组的该为清0
oldTab[j] = null;
//如果e只有一个值,没有形成链表
if (e.next == null)
//把他放在新数组的指定位置
newTab[e.hash & (newCap - 1)] = e;
//如果是红黑树结构,就进入红黑树
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
//如果table[j]中存放的是链表
//loHead和hiHead将原链表拆成两个链表保存
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
//数组扩容后如果链表中保存的Node与数组容量的按位与为0,
//那么将将该Node放到loTail中
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
//如果为1,则放置hiHead中
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
//将loHead链表放到数组原下标位置上
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
//将hiHead链表放到j+oldCap位置上。
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
HashMap查询数据
首先计算传入key值的hash值,之后调用getNode方法
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
//first用于存储table中保存到额节点
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
if (first instanceof TreeNode)
//如果table该下标中保存的红黑树,则执行红黑树的方法
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
//如果不是,就执行链表查找
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
HashMap 删除节点
//输入参数(key的hash,key,null,false,true)
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
//tab用于保存当前table,n保存当前table的长度,
//p用于保存传入的key的hash值映射再table中的位置
Node<K,V>[] tab; Node<K,V> p; int n, index;
//如果key不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
//如果key相同,则说明数组中该index存放就是该节点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
//如果不相同,则说明数组中存放的是链表或者红黑树
else if ((e = p.next) != null) {
//如果p是红黑树
if (p instanceof TreeNode)
//再红黑树中查找该节点
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
//如果是链表
else {
//遍历链表,再链表中查找传入的节点
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
//如果找到的相同的节点
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
//如果节点是红黑树节点,则调用红黑树删除节点的方法
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
//如果是链表,则使用链表伤处
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
HashMap树形化节点
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
//当table的大小大于等于MIN_TREEIFY_CAPACITY时,
//才可以将链表树形化为红黑树,否则直接执行扩容操作
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}